Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings.

Identifieur interne : 002158 ( Main/Corpus ); précédent : 002157; suivant : 002159

The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings.

Auteurs : J A Dominguez ; A. Martin ; A. Anriquez ; A. Albanesi

Source :

RBID : pubmed:22068563

English descriptors

Abstract

The ecological, economic and social values of the ectomycorrhizal fungi of the black truffle found in the rural Mediterranean are well known. The inoculation of Pinus halepensis seedlings with mycorrhizal fungi and rhizobacteria can improve the morphology and physiology of the seedlings and benefit the regeneration of arid regions and the reintroduction of inocula of mycorrhizal fungi into these areas. Some rhizobacteria can improve the establishment and functioning of ectomycorrhizal symbiosis. In this study, seedlings of P. halepensis were inoculated with the mycorrhizal fungus Tuber melanosporum and the rhizobacteria Pseudomonas fluorescens CECT 844 under non-limiting greenhouse conditions. Five months after inoculation, we analysed the growth, water parameters (osmotic potential at saturation, osmotic potential at turgor loss and modulus of elasticity), concentrations of mycorrhizal colonies, nutrient concentration and nutrient contents (N, P, K, Ca, Mg and Fe) in roots and aerial parts of the seedlings. Subsequently, tests were performed to estimate the root growth potentials. None of the treatments changed the water parameters or growth potentials of the roots. The inoculations improved the growth and nutrient uptake of the seedlings, although the combination of P. fluorescens CECT 844 and T. melanosporum did not generally lead to a significant improvement over the positive effects of a simple inoculation of T. melanosporum; however, the addition of P. fluorescens CECT 844 did double the rate of the mycorrhization of T. melanosporum. These results may be promising for enhancing the cultivation of truffles.

DOI: 10.1007/s00572-011-0420-0
PubMed: 22068563

Links to Exploration step

pubmed:22068563

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings.</title>
<author>
<name sortKey="Dominguez, J A" sort="Dominguez, J A" uniqKey="Dominguez J" first="J A" last="Dominguez">J A Dominguez</name>
<affiliation>
<nlm:affiliation>E.T.S.I Mountains and E.U.I.T Forestry, Polytechnic University of Madrid, Av/Ciudad Universitaria s/n., 28040, Madrid, Spain. josealfonso.dominguez@upm.es</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin, A" sort="Martin, A" uniqKey="Martin A" first="A" last="Martin">A. Martin</name>
</author>
<author>
<name sortKey="Anriquez, A" sort="Anriquez, A" uniqKey="Anriquez A" first="A" last="Anriquez">A. Anriquez</name>
</author>
<author>
<name sortKey="Albanesi, A" sort="Albanesi, A" uniqKey="Albanesi A" first="A" last="Albanesi">A. Albanesi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22068563</idno>
<idno type="pmid">22068563</idno>
<idno type="doi">10.1007/s00572-011-0420-0</idno>
<idno type="wicri:Area/Main/Corpus">002158</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002158</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings.</title>
<author>
<name sortKey="Dominguez, J A" sort="Dominguez, J A" uniqKey="Dominguez J" first="J A" last="Dominguez">J A Dominguez</name>
<affiliation>
<nlm:affiliation>E.T.S.I Mountains and E.U.I.T Forestry, Polytechnic University of Madrid, Av/Ciudad Universitaria s/n., 28040, Madrid, Spain. josealfonso.dominguez@upm.es</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin, A" sort="Martin, A" uniqKey="Martin A" first="A" last="Martin">A. Martin</name>
</author>
<author>
<name sortKey="Anriquez, A" sort="Anriquez, A" uniqKey="Anriquez A" first="A" last="Anriquez">A. Anriquez</name>
</author>
<author>
<name sortKey="Albanesi, A" sort="Albanesi, A" uniqKey="Albanesi A" first="A" last="Albanesi">A. Albanesi</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance (MeSH)</term>
<term>Ascomycota (growth & development)</term>
<term>Ascomycota (physiology)</term>
<term>Ecosystem (MeSH)</term>
<term>Microbial Interactions (MeSH)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Pinus (growth & development)</term>
<term>Pinus (microbiology)</term>
<term>Pinus (physiology)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Pseudomonas fluorescens (physiology)</term>
<term>Seedlings (growth & development)</term>
<term>Seedlings (microbiology)</term>
<term>Seedlings (physiology)</term>
<term>Symbiosis (MeSH)</term>
<term>Water (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Ascomycota</term>
<term>Mycorrhizae</term>
<term>Pinus</term>
<term>Plant Roots</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Pinus</term>
<term>Plant Roots</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ascomycota</term>
<term>Mycorrhizae</term>
<term>Pinus</term>
<term>Plant Roots</term>
<term>Pseudomonas fluorescens</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Ecosystem</term>
<term>Microbial Interactions</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ecological, economic and social values of the ectomycorrhizal fungi of the black truffle found in the rural Mediterranean are well known. The inoculation of Pinus halepensis seedlings with mycorrhizal fungi and rhizobacteria can improve the morphology and physiology of the seedlings and benefit the regeneration of arid regions and the reintroduction of inocula of mycorrhizal fungi into these areas. Some rhizobacteria can improve the establishment and functioning of ectomycorrhizal symbiosis. In this study, seedlings of P. halepensis were inoculated with the mycorrhizal fungus Tuber melanosporum and the rhizobacteria Pseudomonas fluorescens CECT 844 under non-limiting greenhouse conditions. Five months after inoculation, we analysed the growth, water parameters (osmotic potential at saturation, osmotic potential at turgor loss and modulus of elasticity), concentrations of mycorrhizal colonies, nutrient concentration and nutrient contents (N, P, K, Ca, Mg and Fe) in roots and aerial parts of the seedlings. Subsequently, tests were performed to estimate the root growth potentials. None of the treatments changed the water parameters or growth potentials of the roots. The inoculations improved the growth and nutrient uptake of the seedlings, although the combination of P. fluorescens CECT 844 and T. melanosporum did not generally lead to a significant improvement over the positive effects of a simple inoculation of T. melanosporum; however, the addition of P. fluorescens CECT 844 did double the rate of the mycorrhization of T. melanosporum. These results may be promising for enhancing the cultivation of truffles.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22068563</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings.</ArticleTitle>
<Pagination>
<MedlinePgn>429-36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-011-0420-0</ELocationID>
<Abstract>
<AbstractText>The ecological, economic and social values of the ectomycorrhizal fungi of the black truffle found in the rural Mediterranean are well known. The inoculation of Pinus halepensis seedlings with mycorrhizal fungi and rhizobacteria can improve the morphology and physiology of the seedlings and benefit the regeneration of arid regions and the reintroduction of inocula of mycorrhizal fungi into these areas. Some rhizobacteria can improve the establishment and functioning of ectomycorrhizal symbiosis. In this study, seedlings of P. halepensis were inoculated with the mycorrhizal fungus Tuber melanosporum and the rhizobacteria Pseudomonas fluorescens CECT 844 under non-limiting greenhouse conditions. Five months after inoculation, we analysed the growth, water parameters (osmotic potential at saturation, osmotic potential at turgor loss and modulus of elasticity), concentrations of mycorrhizal colonies, nutrient concentration and nutrient contents (N, P, K, Ca, Mg and Fe) in roots and aerial parts of the seedlings. Subsequently, tests were performed to estimate the root growth potentials. None of the treatments changed the water parameters or growth potentials of the roots. The inoculations improved the growth and nutrient uptake of the seedlings, although the combination of P. fluorescens CECT 844 and T. melanosporum did not generally lead to a significant improvement over the positive effects of a simple inoculation of T. melanosporum; however, the addition of P. fluorescens CECT 844 did double the rate of the mycorrhization of T. melanosporum. These results may be promising for enhancing the cultivation of truffles.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dominguez</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>E.T.S.I Mountains and E.U.I.T Forestry, Polytechnic University of Madrid, Av/Ciudad Universitaria s/n., 28040, Madrid, Spain. josealfonso.dominguez@upm.es</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anriquez</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Albanesi</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>11</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056265" MajorTopicYN="N">Microbial Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011551" MajorTopicYN="N">Pseudomonas fluorescens</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>08</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22068563</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-011-0420-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Food Microbiol. 2010 Apr;27(2):286-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20141948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Nov;28(11):1693-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18765374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2001 Mar;47(3):264-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11315117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2005 Feb 1;51(3):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16329878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2006 Nov;52(4):670-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17075734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(1):22-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2007 Feb;9(2):425-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1984 Dec;65(1):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Feb;18(2):103-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2001 Feb;41(2):140-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008 Apr 18;165(6):623-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17723253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Mar;74(4):874-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17136369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(5):R51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19432983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2005 Jan;49(1):73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15690228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(4):743-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17688589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1965 Apr 16;148(3668):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17832103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Dec;18(1):23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17874144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 Jan;20(2):131-138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2007 Sep;9(9):2234-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17686021</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002158 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002158 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22068563
   |texte=   The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22068563" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020