Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus.

Identifieur interne : 002130 ( Main/Corpus ); précédent : 002129; suivant : 002131

Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus.

Auteurs : Benjamin E. Wolfe ; Anne Pringle

Source :

RBID : pubmed:22134645

English descriptors

Abstract

The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.

DOI: 10.1038/ismej.2011.155
PubMed: 22134645
PubMed Central: PMC3309363

Links to Exploration step

pubmed:22134645

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus.</title>
<author>
<name sortKey="Wolfe, Benjamin E" sort="Wolfe, Benjamin E" uniqKey="Wolfe B" first="Benjamin E" last="Wolfe">Benjamin E. Wolfe</name>
<affiliation>
<nlm:affiliation>Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. bewolfe@fas.harvard.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pringle, Anne" sort="Pringle, Anne" uniqKey="Pringle A" first="Anne" last="Pringle">Anne Pringle</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22134645</idno>
<idno type="pmid">22134645</idno>
<idno type="doi">10.1038/ismej.2011.155</idno>
<idno type="pmc">PMC3309363</idno>
<idno type="wicri:Area/Main/Corpus">002130</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002130</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus.</title>
<author>
<name sortKey="Wolfe, Benjamin E" sort="Wolfe, Benjamin E" uniqKey="Wolfe B" first="Benjamin E" last="Wolfe">Benjamin E. Wolfe</name>
<affiliation>
<nlm:affiliation>Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. bewolfe@fas.harvard.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pringle, Anne" sort="Pringle, Anne" uniqKey="Pringle A" first="Anne" last="Pringle">Anne Pringle</name>
</author>
</analytic>
<series>
<title level="j">The ISME journal</title>
<idno type="eISSN">1751-7370</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amanita (physiology)</term>
<term>California (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Host Specificity (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Quercus (microbiology)</term>
<term>Quercus (physiology)</term>
<term>Symbiosis (MeSH)</term>
<term>Trees (microbiology)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Quercus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Amanita</term>
<term>Mycorrhizae</term>
<term>Quercus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>California</term>
<term>Ecosystem</term>
<term>Host Specificity</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">22134645</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1751-7370</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>The ISME journal</Title>
<ISOAbbreviation>ISME J</ISOAbbreviation>
</Journal>
<ArticleTitle>Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus.</ArticleTitle>
<Pagination>
<MedlinePgn>745-55</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ismej.2011.155</ELocationID>
<Abstract>
<AbstractText>The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wolfe</LastName>
<ForeName>Benjamin E</ForeName>
<Initials>BE</Initials>
<AffiliationInfo>
<Affiliation>Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. bewolfe@fas.harvard.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pringle</LastName>
<ForeName>Anne</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>ISME J</MedlineTA>
<NlmUniqueID>101301086</NlmUniqueID>
<ISSNLinking>1751-7362</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000545" MajorTopicYN="N">Amanita</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002140" MajorTopicYN="N">California</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058507" MajorTopicYN="N">Host Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22134645</ArticleId>
<ArticleId IdType="pii">ismej2011155</ArticleId>
<ArticleId IdType="doi">10.1038/ismej.2011.155</ArticleId>
<ArticleId IdType="pmc">PMC3309363</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Ecol Evol. 2005 May;20(5):238-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2008;46:75-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18680424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Jul;140(2):234-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15148601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 4;425(6953):78-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12955144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20231481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8534-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10411910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 1973 Jan-Feb;65(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4734427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2007 May;1(1):28-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18043611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Feb 27;211(4485):887-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17819016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2004 Oct;19(10):535-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):960-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19170899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):967-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19594691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Apr;87(4):816-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16676524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Oct;192(1):179-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21627665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2006 Jun;9(6):726-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16706916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 Mar;18(5):817-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Aug;12(8):813-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19500129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Apr;89(4):1032-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Dec;13(12):1560-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21054733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jul;187(2):475-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20456067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2008 Jun;112(Pt 6):674-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2002 Jan-Feb;94(1):40-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Aug;20(8):420-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2000 Feb;75(1):65-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10740893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(1):167-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18194145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):295-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(4):847-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Feb;185(3):803-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2007 Oct;94(10):1630-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636360</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002130 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002130 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22134645
   |texte=   Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22134645" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020