Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Iron ore weathering potentials of ectomycorrhizal plants.

Identifieur interne : 002065 ( Main/Corpus ); précédent : 002064; suivant : 002066

Iron ore weathering potentials of ectomycorrhizal plants.

Auteurs : R A Adeleke ; T E Cloete ; A. Bertrand ; D P Khasa

Source :

RBID : pubmed:22349958

English descriptors

Abstract

Plants in association with soil microorganisms play an important role in mineral weathering. Studies have shown that plants in symbiosis with ectomycorrhizal (ECM) fungi have the potential to increase the uptake of mineral-derived nutrients. However, it is usually difficult to study many of the different factors that influence ectomycorrhizal weathering in a single experiment. In the present study, we carried out a pot experiment where Pinus patula seedlings were grown with or without ECM fungi in the presence of iron ore minerals. The ECM fungi used included Pisolithus tinctorius, Paxillus involutus, Laccaria bicolor and Suillus tomentosus. After 24 weeks, harvesting of the plants was carried out. The concentration of organic acids released into the soil, as well as potassium and phosphorus released from the iron ore were measured. The results suggest that different roles of ectomycorrhizal fungi in mineral weathering such as nutrient absorption and transfer, improving the health of plants and ensuring nutrient circulation in the ecosystem, are species specific, and both mycorrhizal roots and non-mycorrhizal roots can participate in the weathering process of iron ore minerals.

DOI: 10.1007/s00572-012-0431-5
PubMed: 22349958

Links to Exploration step

pubmed:22349958

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Iron ore weathering potentials of ectomycorrhizal plants.</title>
<author>
<name sortKey="Adeleke, R A" sort="Adeleke, R A" uniqKey="Adeleke R" first="R A" last="Adeleke">R A Adeleke</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, New Agriculture Building, Lunnon Road, Hillcrest, 0083 Pretoria, South Africa. rasheed.adeleke@tuks.co.za</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cloete, T E" sort="Cloete, T E" uniqKey="Cloete T" first="T E" last="Cloete">T E Cloete</name>
</author>
<author>
<name sortKey="Bertrand, A" sort="Bertrand, A" uniqKey="Bertrand A" first="A" last="Bertrand">A. Bertrand</name>
</author>
<author>
<name sortKey="Khasa, D P" sort="Khasa, D P" uniqKey="Khasa D" first="D P" last="Khasa">D P Khasa</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22349958</idno>
<idno type="pmid">22349958</idno>
<idno type="doi">10.1007/s00572-012-0431-5</idno>
<idno type="wicri:Area/Main/Corpus">002065</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002065</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Iron ore weathering potentials of ectomycorrhizal plants.</title>
<author>
<name sortKey="Adeleke, R A" sort="Adeleke, R A" uniqKey="Adeleke R" first="R A" last="Adeleke">R A Adeleke</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, New Agriculture Building, Lunnon Road, Hillcrest, 0083 Pretoria, South Africa. rasheed.adeleke@tuks.co.za</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cloete, T E" sort="Cloete, T E" uniqKey="Cloete T" first="T E" last="Cloete">T E Cloete</name>
</author>
<author>
<name sortKey="Bertrand, A" sort="Bertrand, A" uniqKey="Bertrand A" first="A" last="Bertrand">A. Bertrand</name>
</author>
<author>
<name sortKey="Khasa, D P" sort="Khasa, D P" uniqKey="Khasa D" first="D P" last="Khasa">D P Khasa</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (MeSH)</term>
<term>Citric Acid (analysis)</term>
<term>Citric Acid (metabolism)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Iron Compounds (metabolism)</term>
<term>Laccaria (growth & development)</term>
<term>Laccaria (metabolism)</term>
<term>Microbiological Techniques (methods)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Oxalic Acid (analysis)</term>
<term>Oxalic Acid (metabolism)</term>
<term>Phosphorus (metabolism)</term>
<term>Pinus (growth & development)</term>
<term>Pinus (metabolism)</term>
<term>Pinus (microbiology)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Potassium (metabolism)</term>
<term>Soil (analysis)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Citric Acid</term>
<term>Oxalic Acid</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Citric Acid</term>
<term>Iron</term>
<term>Iron Compounds</term>
<term>Oxalic Acid</term>
<term>Phosphorus</term>
<term>Potassium</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Laccaria</term>
<term>Mycorrhizae</term>
<term>Pinus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Laccaria</term>
<term>Mycorrhizae</term>
<term>Pinus</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Microbiological Techniques</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Pinus</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Hydrogen-Ion Concentration</term>
<term>Soil Microbiology</term>
<term>Species Specificity</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants in association with soil microorganisms play an important role in mineral weathering. Studies have shown that plants in symbiosis with ectomycorrhizal (ECM) fungi have the potential to increase the uptake of mineral-derived nutrients. However, it is usually difficult to study many of the different factors that influence ectomycorrhizal weathering in a single experiment. In the present study, we carried out a pot experiment where Pinus patula seedlings were grown with or without ECM fungi in the presence of iron ore minerals. The ECM fungi used included Pisolithus tinctorius, Paxillus involutus, Laccaria bicolor and Suillus tomentosus. After 24 weeks, harvesting of the plants was carried out. The concentration of organic acids released into the soil, as well as potassium and phosphorus released from the iron ore were measured. The results suggest that different roles of ectomycorrhizal fungi in mineral weathering such as nutrient absorption and transfer, improving the health of plants and ensuring nutrient circulation in the ecosystem, are species specific, and both mycorrhizal roots and non-mycorrhizal roots can participate in the weathering process of iron ore minerals.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22349958</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Iron ore weathering potentials of ectomycorrhizal plants.</ArticleTitle>
<Pagination>
<MedlinePgn>535-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-012-0431-5</ELocationID>
<Abstract>
<AbstractText>Plants in association with soil microorganisms play an important role in mineral weathering. Studies have shown that plants in symbiosis with ectomycorrhizal (ECM) fungi have the potential to increase the uptake of mineral-derived nutrients. However, it is usually difficult to study many of the different factors that influence ectomycorrhizal weathering in a single experiment. In the present study, we carried out a pot experiment where Pinus patula seedlings were grown with or without ECM fungi in the presence of iron ore minerals. The ECM fungi used included Pisolithus tinctorius, Paxillus involutus, Laccaria bicolor and Suillus tomentosus. After 24 weeks, harvesting of the plants was carried out. The concentration of organic acids released into the soil, as well as potassium and phosphorus released from the iron ore were measured. The results suggest that different roles of ectomycorrhizal fungi in mineral weathering such as nutrient absorption and transfer, improving the health of plants and ensuring nutrient circulation in the ecosystem, are species specific, and both mycorrhizal roots and non-mycorrhizal roots can participate in the weathering process of iron ore minerals.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Adeleke</LastName>
<ForeName>R A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, New Agriculture Building, Lunnon Road, Hillcrest, 0083 Pretoria, South Africa. rasheed.adeleke@tuks.co.za</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cloete</LastName>
<ForeName>T E</ForeName>
<Initials>TE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bertrand</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Khasa</LastName>
<ForeName>D P</ForeName>
<Initials>DP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058085">Iron Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2968PHW8QP</RegistryNumber>
<NameOfSubstance UI="D019343">Citric Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9E7R5L6H31</RegistryNumber>
<NameOfSubstance UI="D019815">Oxalic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019343" MajorTopicYN="N">Citric Acid</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058085" MajorTopicYN="N">Iron Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055399" MajorTopicYN="N">Laccaria</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008828" MajorTopicYN="N">Microbiological Techniques</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019815" MajorTopicYN="N">Oxalic Acid</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22349958</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-012-0431-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Ecol Evol. 2001 May 1;16(5):248-254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11301154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1969 Apr;59(4):411-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5811914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2008 Dec;54(12):1064-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19096461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Biochem Physiol. 1959 Aug;37(8):911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13671378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(4):805-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Feb;72(2):1258-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3404-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10097050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1999;41:47-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10500844</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002065 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002065 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22349958
   |texte=   Iron ore weathering potentials of ectomycorrhizal plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22349958" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020