Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants.

Identifieur interne : 002056 ( Main/Corpus ); précédent : 002055; suivant : 002057

Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants.

Auteurs : Mohamed Najib El-Mesbahi ; Rosario Azc N ; Juan Manuel Ruiz-Lozano ; Ricardo Aroca

Source :

RBID : pubmed:22370879

English descriptors

Abstract

It is well known that the arbuscular mycorrhizal (AM) symbiosis helps the host plant to overcome several abiotic stresses including drought. One of the mechanisms for this drought tolerance enhancement is the higher water uptake capacity of the mycorrhizal plants. However, the effects of the AM symbiosis on processes regulating root hydraulic properties of the host plant, such as root hydraulic conductivity and plasma membrane aquaporin gene expression, and protein abundance, are not well defined. Since it is known that K(+) status is modified by AM and that it regulates root hydraulic properties, it has been tested how plant K(+) status could modify the effects of the symbiosis on root hydraulic conductivity and plasma membrane aquaporin gene expression and protein abundance, using maize (Zea mays L.) plants and Glomus intraradices as a model. It was observed that the supply of extra K(+) increased root hydraulic conductivity only in AM plants. Also, the different pattern of plasma membrane aquaporin gene expression and protein abundance between AM and non-AM plants changed with the application of extra K(+). Thus, plant K(+) status could be one of the causes of the different observed effects of the AM symbiosis on root hydraulic properties. The present study also highlights the critical importance of AM fungal aquaporins in regulating root hydraulic properties of the host plant.

DOI: 10.1007/s00572-012-0433-3
PubMed: 22370879

Links to Exploration step

pubmed:22370879

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants.</title>
<author>
<name sortKey="El Mesbahi, Mohamed Najib" sort="El Mesbahi, Mohamed Najib" uniqKey="El Mesbahi M" first="Mohamed Najib" last="El-Mesbahi">Mohamed Najib El-Mesbahi</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Azc N, Rosario" sort="Azc N, Rosario" uniqKey="Azc N R" first="Rosario" last="Azc N">Rosario Azc N</name>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22370879</idno>
<idno type="pmid">22370879</idno>
<idno type="doi">10.1007/s00572-012-0433-3</idno>
<idno type="wicri:Area/Main/Corpus">002056</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002056</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants.</title>
<author>
<name sortKey="El Mesbahi, Mohamed Najib" sort="El Mesbahi, Mohamed Najib" uniqKey="El Mesbahi M" first="Mohamed Najib" last="El-Mesbahi">Mohamed Najib El-Mesbahi</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Azc N, Rosario" sort="Azc N, Rosario" uniqKey="Azc N R" first="Rosario" last="Azc N">Rosario Azc N</name>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aquaporins (genetics)</term>
<term>Aquaporins (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Cell Membrane (metabolism)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Stomata (metabolism)</term>
<term>Potassium (metabolism)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Water (metabolism)</term>
<term>Zea mays (genetics)</term>
<term>Zea mays (growth & development)</term>
<term>Zea mays (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aquaporins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aquaporins</term>
<term>Plant Proteins</term>
<term>Potassium</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Plant Stomata</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Droughts</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Fungal</term>
<term>Soil Microbiology</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is well known that the arbuscular mycorrhizal (AM) symbiosis helps the host plant to overcome several abiotic stresses including drought. One of the mechanisms for this drought tolerance enhancement is the higher water uptake capacity of the mycorrhizal plants. However, the effects of the AM symbiosis on processes regulating root hydraulic properties of the host plant, such as root hydraulic conductivity and plasma membrane aquaporin gene expression, and protein abundance, are not well defined. Since it is known that K(+) status is modified by AM and that it regulates root hydraulic properties, it has been tested how plant K(+) status could modify the effects of the symbiosis on root hydraulic conductivity and plasma membrane aquaporin gene expression and protein abundance, using maize (Zea mays L.) plants and Glomus intraradices as a model. It was observed that the supply of extra K(+) increased root hydraulic conductivity only in AM plants. Also, the different pattern of plasma membrane aquaporin gene expression and protein abundance between AM and non-AM plants changed with the application of extra K(+). Thus, plant K(+) status could be one of the causes of the different observed effects of the AM symbiosis on root hydraulic properties. The present study also highlights the critical importance of AM fungal aquaporins in regulating root hydraulic properties of the host plant.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22370879</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants.</ArticleTitle>
<Pagination>
<MedlinePgn>555-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-012-0433-3</ELocationID>
<Abstract>
<AbstractText>It is well known that the arbuscular mycorrhizal (AM) symbiosis helps the host plant to overcome several abiotic stresses including drought. One of the mechanisms for this drought tolerance enhancement is the higher water uptake capacity of the mycorrhizal plants. However, the effects of the AM symbiosis on processes regulating root hydraulic properties of the host plant, such as root hydraulic conductivity and plasma membrane aquaporin gene expression, and protein abundance, are not well defined. Since it is known that K(+) status is modified by AM and that it regulates root hydraulic properties, it has been tested how plant K(+) status could modify the effects of the symbiosis on root hydraulic conductivity and plasma membrane aquaporin gene expression and protein abundance, using maize (Zea mays L.) plants and Glomus intraradices as a model. It was observed that the supply of extra K(+) increased root hydraulic conductivity only in AM plants. Also, the different pattern of plasma membrane aquaporin gene expression and protein abundance between AM and non-AM plants changed with the application of extra K(+). Thus, plant K(+) status could be one of the causes of the different observed effects of the AM symbiosis on root hydraulic properties. The present study also highlights the critical importance of AM fungal aquaporins in regulating root hydraulic properties of the host plant.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>El-Mesbahi</LastName>
<ForeName>Mohamed Najib</ForeName>
<Initials>MN</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Azcón</LastName>
<ForeName>Rosario</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ruiz-Lozano</LastName>
<ForeName>Juan Manuel</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aroca</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020346">Aquaporins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020346" MajorTopicYN="N">Aquaporins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>11</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22370879</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-012-0433-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2010;61(1):157-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19861653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(4):808-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Jun;161(6):675-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15266714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jun;190(4):927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21352231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Aug;70(6):647-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19437122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Sep;51(350):1531-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2011 Apr;7(4):1322-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21321750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(8):2029-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Oct;164(10):1300-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Sep;62(1-2):305-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Dec;104(7):1263-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(403):1743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Feb;15(2):509-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Jul 3;14(13):3028-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7542585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):755-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):122-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17109903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jul 13;10:142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jul;232(2):533-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20499084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2005 Nov;7(6):706-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Aug;226(3):729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17443343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Feb;60(3):389-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16514562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Feb;31(2):131-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21367746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Apr;14(4):869-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11971141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2011 Apr;12(4):473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21182578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1418-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20034965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2009 Nov;58(4):942-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19495853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Sep 1;166(13):1350-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19342122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Sep;22(9):1169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2008 Nov;56(4):704-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Apr;109(5):1009-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22294476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(4):693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Jan;42(1):28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):2000-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19211703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Nov;8(11):1926-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17014492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Jul;70(5):565-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19404751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Sep;48(9):1331-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:595-624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444909</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002056 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002056 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22370879
   |texte=   Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22370879" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020