Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy.

Identifieur interne : 002038 ( Main/Corpus ); précédent : 002037; suivant : 002039

Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy.

Auteurs : Rhiannon G. Creasey ; Nicolas H. Voelcker ; Carolyn J. Schultz

Source :

RBID : pubmed:22425601

English descriptors

Abstract

Fiber-forming proteins and peptides are being scrutinized as a promising source of building blocks for new nanomaterials. Arabinogalactan-like (AGL) proteins expressed at the symbiotic interface between plant roots and arbuscular mycorrhizal fungi have novel sequences, hypothesized to form polyproline II (PPII) helix structures. The functional nature of these proteins is unknown but they may form structures for the establishment and maintenance of fungal hyphae. Here we show that recombinant AGL1 (rAGL1) and recombinant AGL3 (rAGL3) are extended proteins based upon secondary structural characteristics determined by electronic circular dichroism (CD) spectroscopy and can self-assemble into fibers and microtubes as observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). CD spectroscopy results of synthetic peptides based on repeat regions in AGL1, AGL2 and AGL3 suggest that the synthetic peptides contain significant amounts of extended PPII helices and that these structures are influenced by ionic strength and, at least in one case, by concentration. Point mutations of a single residue of the repeat region of AGL3 resulted in altered secondary structures. Self-assembly of these repeats was observed by means of AFM and optical microscopy. Peptide (APADGK)(6) forms structures with similar morphology to rAGL1 suggesting that these repeats are crucial for the morphology of rAGL1 fibers. These novel self-assembling sequences may find applications as precursors for bioinspired nanomaterials.

DOI: 10.1016/j.bbapap.2012.02.009
PubMed: 22425601

Links to Exploration step

pubmed:22425601

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy.</title>
<author>
<name sortKey="Creasey, Rhiannon G" sort="Creasey, Rhiannon G" uniqKey="Creasey R" first="Rhiannon G" last="Creasey">Rhiannon G. Creasey</name>
<affiliation>
<nlm:affiliation>School of Chemical and Physical Sciences, Flinders University of South Australia, Australia. rhiannon.creasey@flinders.edu.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Voelcker, Nicolas H" sort="Voelcker, Nicolas H" uniqKey="Voelcker N" first="Nicolas H" last="Voelcker">Nicolas H. Voelcker</name>
</author>
<author>
<name sortKey="Schultz, Carolyn J" sort="Schultz, Carolyn J" uniqKey="Schultz C" first="Carolyn J" last="Schultz">Carolyn J. Schultz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22425601</idno>
<idno type="pmid">22425601</idno>
<idno type="doi">10.1016/j.bbapap.2012.02.009</idno>
<idno type="wicri:Area/Main/Corpus">002038</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002038</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy.</title>
<author>
<name sortKey="Creasey, Rhiannon G" sort="Creasey, Rhiannon G" uniqKey="Creasey R" first="Rhiannon G" last="Creasey">Rhiannon G. Creasey</name>
<affiliation>
<nlm:affiliation>School of Chemical and Physical Sciences, Flinders University of South Australia, Australia. rhiannon.creasey@flinders.edu.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Voelcker, Nicolas H" sort="Voelcker, Nicolas H" uniqKey="Voelcker N" first="Nicolas H" last="Voelcker">Nicolas H. Voelcker</name>
</author>
<author>
<name sortKey="Schultz, Carolyn J" sort="Schultz, Carolyn J" uniqKey="Schultz C" first="Carolyn J" last="Schultz">Carolyn J. Schultz</name>
</author>
</analytic>
<series>
<title level="j">Biochimica et biophysica acta</title>
<idno type="ISSN">0006-3002</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomimetic Materials (chemical synthesis)</term>
<term>Circular Dichroism (MeSH)</term>
<term>Escherichia coli (genetics)</term>
<term>Microscopy, Atomic Force (MeSH)</term>
<term>Microscopy, Electron, Scanning (MeSH)</term>
<term>Mucoproteins (biosynthesis)</term>
<term>Mucoproteins (chemistry)</term>
<term>Mucoproteins (genetics)</term>
<term>Mycorrhizae (chemistry)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nanofibers (chemistry)</term>
<term>Nanofibers (ultrastructure)</term>
<term>Osmolar Concentration (MeSH)</term>
<term>Peptides (chemical synthesis)</term>
<term>Peptides (chemistry)</term>
<term>Plant Proteins (biosynthesis)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plants (microbiology)</term>
<term>Point Mutation (MeSH)</term>
<term>Polylysine (chemistry)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Recombinant Proteins (biosynthesis)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Mucoproteins</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemical synthesis" xml:lang="en">
<term>Biomimetic Materials</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Mucoproteins</term>
<term>Mycorrhizae</term>
<term>Nanofibers</term>
<term>Peptides</term>
<term>Plant Proteins</term>
<term>Polylysine</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Mucoproteins</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Nanofibers</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Circular Dichroism</term>
<term>Microscopy, Atomic Force</term>
<term>Microscopy, Electron, Scanning</term>
<term>Osmolar Concentration</term>
<term>Point Mutation</term>
<term>Protein Structure, Secondary</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fiber-forming proteins and peptides are being scrutinized as a promising source of building blocks for new nanomaterials. Arabinogalactan-like (AGL) proteins expressed at the symbiotic interface between plant roots and arbuscular mycorrhizal fungi have novel sequences, hypothesized to form polyproline II (PPII) helix structures. The functional nature of these proteins is unknown but they may form structures for the establishment and maintenance of fungal hyphae. Here we show that recombinant AGL1 (rAGL1) and recombinant AGL3 (rAGL3) are extended proteins based upon secondary structural characteristics determined by electronic circular dichroism (CD) spectroscopy and can self-assemble into fibers and microtubes as observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). CD spectroscopy results of synthetic peptides based on repeat regions in AGL1, AGL2 and AGL3 suggest that the synthetic peptides contain significant amounts of extended PPII helices and that these structures are influenced by ionic strength and, at least in one case, by concentration. Point mutations of a single residue of the repeat region of AGL3 resulted in altered secondary structures. Self-assembly of these repeats was observed by means of AFM and optical microscopy. Peptide (APADGK)(6) forms structures with similar morphology to rAGL1 suggesting that these repeats are crucial for the morphology of rAGL1 fibers. These novel self-assembling sequences may find applications as precursors for bioinspired nanomaterials.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22425601</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-3002</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1824</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Biochimica et biophysica acta</Title>
<ISOAbbreviation>Biochim Biophys Acta</ISOAbbreviation>
</Journal>
<ArticleTitle>Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy.</ArticleTitle>
<Pagination>
<MedlinePgn>711-22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbapap.2012.02.009</ELocationID>
<Abstract>
<AbstractText>Fiber-forming proteins and peptides are being scrutinized as a promising source of building blocks for new nanomaterials. Arabinogalactan-like (AGL) proteins expressed at the symbiotic interface between plant roots and arbuscular mycorrhizal fungi have novel sequences, hypothesized to form polyproline II (PPII) helix structures. The functional nature of these proteins is unknown but they may form structures for the establishment and maintenance of fungal hyphae. Here we show that recombinant AGL1 (rAGL1) and recombinant AGL3 (rAGL3) are extended proteins based upon secondary structural characteristics determined by electronic circular dichroism (CD) spectroscopy and can self-assemble into fibers and microtubes as observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). CD spectroscopy results of synthetic peptides based on repeat regions in AGL1, AGL2 and AGL3 suggest that the synthetic peptides contain significant amounts of extended PPII helices and that these structures are influenced by ionic strength and, at least in one case, by concentration. Point mutations of a single residue of the repeat region of AGL3 resulted in altered secondary structures. Self-assembly of these repeats was observed by means of AFM and optical microscopy. Peptide (APADGK)(6) forms structures with similar morphology to rAGL1 suggesting that these repeats are crucial for the morphology of rAGL1 fibers. These novel self-assembling sequences may find applications as precursors for bioinspired nanomaterials.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Creasey</LastName>
<ForeName>Rhiannon G</ForeName>
<Initials>RG</Initials>
<AffiliationInfo>
<Affiliation>School of Chemical and Physical Sciences, Flinders University of South Australia, Australia. rhiannon.creasey@flinders.edu.au</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Voelcker</LastName>
<ForeName>Nicolas H</ForeName>
<Initials>NH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schultz</LastName>
<ForeName>Carolyn J</ForeName>
<Initials>CJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biochim Biophys Acta</MedlineTA>
<NlmUniqueID>0217513</NlmUniqueID>
<ISSNLinking>0006-3002</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009088">Mucoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C006619">arabinogalactan proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>25104-18-1</RegistryNumber>
<NameOfSubstance UI="D011107">Polylysine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>25191-13-3</RegistryNumber>
<NameOfSubstance UI="C011083">polyproline</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D040761" MajorTopicYN="N">Biomimetic Materials</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="Y">chemical synthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018625" MajorTopicYN="N">Microscopy, Atomic Force</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008855" MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009088" MajorTopicYN="N">Mucoproteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057139" MajorTopicYN="N">Nanofibers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009994" MajorTopicYN="N">Osmolar Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="Y">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017354" MajorTopicYN="N">Point Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011107" MajorTopicYN="N">Polylysine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>11</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>01</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22425601</ArticleId>
<ArticleId IdType="pii">S1570-9639(12)00038-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbapap.2012.02.009</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002038 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002038 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22425601
   |texte=   Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22425601" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020