Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.

Identifieur interne : 002018 ( Main/Corpus ); précédent : 002017; suivant : 002019

The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.

Auteurs : Francois Rineau ; Doris Roth ; Firoz Shah ; Mark Smits ; Tomas Johansson ; Björn Canb Ck ; Peter Bjarke Olsen ; Per Persson ; Morten Nedergaard Grell ; Erika Lindquist ; Igor V. Grigoriev ; Lene Lange ; Anders Tunlid

Source :

RBID : pubmed:22469289

English descriptors

Abstract

Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter-protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter-protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.

DOI: 10.1111/j.1462-2920.2012.02736.x
PubMed: 22469289
PubMed Central: PMC3440587

Links to Exploration step

pubmed:22469289

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.</title>
<author>
<name sortKey="Rineau, Francois" sort="Rineau, Francois" uniqKey="Rineau F" first="Francois" last="Rineau">Francois Rineau</name>
<affiliation>
<nlm:affiliation>Department of Biology, Microbial Ecology Group, Ecology Building, Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roth, Doris" sort="Roth, Doris" uniqKey="Roth D" first="Doris" last="Roth">Doris Roth</name>
</author>
<author>
<name sortKey="Shah, Firoz" sort="Shah, Firoz" uniqKey="Shah F" first="Firoz" last="Shah">Firoz Shah</name>
</author>
<author>
<name sortKey="Smits, Mark" sort="Smits, Mark" uniqKey="Smits M" first="Mark" last="Smits">Mark Smits</name>
</author>
<author>
<name sortKey="Johansson, Tomas" sort="Johansson, Tomas" uniqKey="Johansson T" first="Tomas" last="Johansson">Tomas Johansson</name>
</author>
<author>
<name sortKey="Canb Ck, Bjorn" sort="Canb Ck, Bjorn" uniqKey="Canb Ck B" first="Björn" last="Canb Ck">Björn Canb Ck</name>
</author>
<author>
<name sortKey="Olsen, Peter Bjarke" sort="Olsen, Peter Bjarke" uniqKey="Olsen P" first="Peter Bjarke" last="Olsen">Peter Bjarke Olsen</name>
</author>
<author>
<name sortKey="Persson, Per" sort="Persson, Per" uniqKey="Persson P" first="Per" last="Persson">Per Persson</name>
</author>
<author>
<name sortKey="Grell, Morten Nedergaard" sort="Grell, Morten Nedergaard" uniqKey="Grell M" first="Morten Nedergaard" last="Grell">Morten Nedergaard Grell</name>
</author>
<author>
<name sortKey="Lindquist, Erika" sort="Lindquist, Erika" uniqKey="Lindquist E" first="Erika" last="Lindquist">Erika Lindquist</name>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
</author>
<author>
<name sortKey="Lange, Lene" sort="Lange, Lene" uniqKey="Lange L" first="Lene" last="Lange">Lene Lange</name>
</author>
<author>
<name sortKey="Tunlid, Anders" sort="Tunlid, Anders" uniqKey="Tunlid A" first="Anders" last="Tunlid">Anders Tunlid</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22469289</idno>
<idno type="pmid">22469289</idno>
<idno type="doi">10.1111/j.1462-2920.2012.02736.x</idno>
<idno type="pmc">PMC3440587</idno>
<idno type="wicri:Area/Main/Corpus">002018</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002018</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.</title>
<author>
<name sortKey="Rineau, Francois" sort="Rineau, Francois" uniqKey="Rineau F" first="Francois" last="Rineau">Francois Rineau</name>
<affiliation>
<nlm:affiliation>Department of Biology, Microbial Ecology Group, Ecology Building, Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roth, Doris" sort="Roth, Doris" uniqKey="Roth D" first="Doris" last="Roth">Doris Roth</name>
</author>
<author>
<name sortKey="Shah, Firoz" sort="Shah, Firoz" uniqKey="Shah F" first="Firoz" last="Shah">Firoz Shah</name>
</author>
<author>
<name sortKey="Smits, Mark" sort="Smits, Mark" uniqKey="Smits M" first="Mark" last="Smits">Mark Smits</name>
</author>
<author>
<name sortKey="Johansson, Tomas" sort="Johansson, Tomas" uniqKey="Johansson T" first="Tomas" last="Johansson">Tomas Johansson</name>
</author>
<author>
<name sortKey="Canb Ck, Bjorn" sort="Canb Ck, Bjorn" uniqKey="Canb Ck B" first="Björn" last="Canb Ck">Björn Canb Ck</name>
</author>
<author>
<name sortKey="Olsen, Peter Bjarke" sort="Olsen, Peter Bjarke" uniqKey="Olsen P" first="Peter Bjarke" last="Olsen">Peter Bjarke Olsen</name>
</author>
<author>
<name sortKey="Persson, Per" sort="Persson, Per" uniqKey="Persson P" first="Per" last="Persson">Per Persson</name>
</author>
<author>
<name sortKey="Grell, Morten Nedergaard" sort="Grell, Morten Nedergaard" uniqKey="Grell M" first="Morten Nedergaard" last="Grell">Morten Nedergaard Grell</name>
</author>
<author>
<name sortKey="Lindquist, Erika" sort="Lindquist, Erika" uniqKey="Lindquist E" first="Erika" last="Lindquist">Erika Lindquist</name>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
</author>
<author>
<name sortKey="Lange, Lene" sort="Lange, Lene" uniqKey="Lange L" first="Lene" last="Lange">Lene Lange</name>
</author>
<author>
<name sortKey="Tunlid, Anders" sort="Tunlid, Anders" uniqKey="Tunlid A" first="Anders" last="Tunlid">Anders Tunlid</name>
</author>
</analytic>
<series>
<title level="j">Environmental microbiology</title>
<idno type="eISSN">1462-2920</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agaricales (growth & development)</term>
<term>Agaricales (metabolism)</term>
<term>Agaricales (physiology)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Ecosystem (MeSH)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Iron (metabolism)</term>
<term>Mycorrhizae (chemistry)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plants (metabolism)</term>
<term>Plants (microbiology)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Trees (metabolism)</term>
<term>Trees (microbiology)</term>
<term>Wood (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Hydrogen Peroxide</term>
<term>Iron</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Agaricales</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Agaricales</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Plants</term>
<term>Trees</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Plants</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Agaricales</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Ecosystem</term>
<term>Soil Microbiology</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter-protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter-protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">22469289</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1462-2920</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Environmental microbiology</Title>
<ISOAbbreviation>Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.</ArticleTitle>
<Pagination>
<MedlinePgn>1477-87</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1462-2920.2012.02736.x</ELocationID>
<Abstract>
<AbstractText>Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter-protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter-protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.</AbstractText>
<CopyrightInformation>© 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rineau</LastName>
<ForeName>Francois</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Microbial Ecology Group, Ecology Building, Lund, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roth</LastName>
<ForeName>Doris</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shah</LastName>
<ForeName>Firoz</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smits</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johansson</LastName>
<ForeName>Tomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Canbäck</LastName>
<ForeName>Björn</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Olsen</LastName>
<ForeName>Peter Bjarke</ForeName>
<Initials>PB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Persson</LastName>
<ForeName>Per</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grell</LastName>
<ForeName>Morten Nedergaard</ForeName>
<Initials>MN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lindquist</LastName>
<ForeName>Erika</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grigoriev</LastName>
<ForeName>Igor V</ForeName>
<Initials>IV</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lange</LastName>
<ForeName>Lene</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tunlid</LastName>
<ForeName>Anders</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE34402</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Environ Microbiol</MedlineTA>
<NlmUniqueID>100883692</NlmUniqueID>
<ISSNLinking>1462-2912</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C045076">Fenton's reagent</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000363" MajorTopicYN="N">Agaricales</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22469289</ArticleId>
<ArticleId IdType="doi">10.1111/j.1462-2920.2012.02736.x</ArticleId>
<ArticleId IdType="pmc">PMC3440587</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol. 2011 Apr;13(4):1091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Apr;48(4):343-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Oct;77(19):7007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 6;478(7367):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21979045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2012 Jan;109(1):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21837665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Oct 13;290(5490):291-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11030643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12209002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1985 Jan;144(1):142-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3838626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 1996;59:69-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8798188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 12;272(50):31301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9395457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2005 Sep;29(4):795-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(1):153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16539612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Oct;21(10):548-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16806577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Dec;8(12):2214-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17107562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(3):611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2007 Feb 20;128(3):500-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 Nov-Dec;98(6):971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2008 May;32(3):501-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18371173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 May;46(5):427-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19373972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(3):736-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Oct;161(4):657-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19685081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Jul;87(3):801-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20464388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Jan;13(1):96-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21199251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Mar;13(3):819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21176055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15079-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876164</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002018 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002018 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22469289
   |texte=   The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22469289" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020