Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation.

Identifieur interne : 001F83 ( Main/Corpus ); précédent : 001F82; suivant : 001F84

Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation.

Auteurs : Sergey Ivanov ; Elena E. Fedorova ; Erik Limpens ; Stephane De Mita ; Andrea Genre ; Paola Bonfante ; Ton Bisseling

Source :

RBID : pubmed:22566631

English descriptors

Abstract

Endosymbiotic interactions are characterized by the formation of specialized membrane compartments, by the host in which the microbes are hosted, in an intracellular manner. Two well-studied examples, which are of major agricultural and ecological importance, are the widespread arbuscular mycorrhizal symbiosis and the Rhizobium-legume symbiosis. In both symbioses, the specialized host membrane that surrounds the microbes forms a symbiotic interface, which facilitates the exchange of, for example, nutrients in a controlled manner and, therefore, forms the heart of endosymbiosis. Despite their key importance, the molecular and cellular mechanisms underlying the formation of these membrane interfaces are largely unknown. Recent studies strongly suggest that the Rhizobium-legume symbiosis coopted a signaling pathway, including receptor, from the more ancient arbuscular mycorrhizal symbiosis to form a symbiotic interface. Here, we show that two highly homologous exocytotic vesicle-associated membrane proteins (VAMPs) are required for formation of the symbiotic membrane interface in both interactions. Silencing of these Medicago VAMP72 genes has a minor effect on nonsymbiotic plant development and nodule formation. However, it blocks symbiosome as well as arbuscule formation, whereas root colonization by the microbes is not affected. Identification of these VAMP72s as common symbiotic regulators in exocytotic vesicle trafficking suggests that the ancient exocytotic pathway forming the periarbuscular membrane compartment has also been coopted in the Rhizobium-legume symbiosis.

DOI: 10.1073/pnas.1200407109
PubMed: 22566631
PubMed Central: PMC3361388

Links to Exploration step

pubmed:22566631

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation.</title>
<author>
<name sortKey="Ivanov, Sergey" sort="Ivanov, Sergey" uniqKey="Ivanov S" first="Sergey" last="Ivanov">Sergey Ivanov</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fedorova, Elena E" sort="Fedorova, Elena E" uniqKey="Fedorova E" first="Elena E" last="Fedorova">Elena E. Fedorova</name>
</author>
<author>
<name sortKey="Limpens, Erik" sort="Limpens, Erik" uniqKey="Limpens E" first="Erik" last="Limpens">Erik Limpens</name>
</author>
<author>
<name sortKey="De Mita, Stephane" sort="De Mita, Stephane" uniqKey="De Mita S" first="Stephane" last="De Mita">Stephane De Mita</name>
</author>
<author>
<name sortKey="Genre, Andrea" sort="Genre, Andrea" uniqKey="Genre A" first="Andrea" last="Genre">Andrea Genre</name>
</author>
<author>
<name sortKey="Bonfante, Paola" sort="Bonfante, Paola" uniqKey="Bonfante P" first="Paola" last="Bonfante">Paola Bonfante</name>
</author>
<author>
<name sortKey="Bisseling, Ton" sort="Bisseling, Ton" uniqKey="Bisseling T" first="Ton" last="Bisseling">Ton Bisseling</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22566631</idno>
<idno type="pmid">22566631</idno>
<idno type="doi">10.1073/pnas.1200407109</idno>
<idno type="pmc">PMC3361388</idno>
<idno type="wicri:Area/Main/Corpus">001F83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation.</title>
<author>
<name sortKey="Ivanov, Sergey" sort="Ivanov, Sergey" uniqKey="Ivanov S" first="Sergey" last="Ivanov">Sergey Ivanov</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fedorova, Elena E" sort="Fedorova, Elena E" uniqKey="Fedorova E" first="Elena E" last="Fedorova">Elena E. Fedorova</name>
</author>
<author>
<name sortKey="Limpens, Erik" sort="Limpens, Erik" uniqKey="Limpens E" first="Erik" last="Limpens">Erik Limpens</name>
</author>
<author>
<name sortKey="De Mita, Stephane" sort="De Mita, Stephane" uniqKey="De Mita S" first="Stephane" last="De Mita">Stephane De Mita</name>
</author>
<author>
<name sortKey="Genre, Andrea" sort="Genre, Andrea" uniqKey="Genre A" first="Andrea" last="Genre">Andrea Genre</name>
</author>
<author>
<name sortKey="Bonfante, Paola" sort="Bonfante, Paola" uniqKey="Bonfante P" first="Paola" last="Bonfante">Paola Bonfante</name>
</author>
<author>
<name sortKey="Bisseling, Ton" sort="Bisseling, Ton" uniqKey="Bisseling T" first="Ton" last="Bisseling">Ton Bisseling</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis (microbiology)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Bacteria (metabolism)</term>
<term>Exocytosis (physiology)</term>
<term>Fabaceae (genetics)</term>
<term>Fabaceae (metabolism)</term>
<term>Fabaceae (microbiology)</term>
<term>Gene Silencing (MeSH)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (metabolism)</term>
<term>Lycopersicon esculentum (microbiology)</term>
<term>Medicago truncatula (genetics)</term>
<term>Medicago truncatula (metabolism)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>R-SNARE Proteins (metabolism)</term>
<term>Rhizobium (metabolism)</term>
<term>Signal Transduction (physiology)</term>
<term>Soybeans (genetics)</term>
<term>Soybeans (metabolism)</term>
<term>Soybeans (microbiology)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>R-SNARE Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Fabaceae</term>
<term>Lycopersicon esculentum</term>
<term>Medicago truncatula</term>
<term>Populus</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Bacteria</term>
<term>Fabaceae</term>
<term>Lycopersicon esculentum</term>
<term>Medicago truncatula</term>
<term>Mycorrhizae</term>
<term>Populus</term>
<term>Rhizobium</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Fabaceae</term>
<term>Lycopersicon esculentum</term>
<term>Medicago truncatula</term>
<term>Populus</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Exocytosis</term>
<term>Signal Transduction</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Silencing</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Endosymbiotic interactions are characterized by the formation of specialized membrane compartments, by the host in which the microbes are hosted, in an intracellular manner. Two well-studied examples, which are of major agricultural and ecological importance, are the widespread arbuscular mycorrhizal symbiosis and the Rhizobium-legume symbiosis. In both symbioses, the specialized host membrane that surrounds the microbes forms a symbiotic interface, which facilitates the exchange of, for example, nutrients in a controlled manner and, therefore, forms the heart of endosymbiosis. Despite their key importance, the molecular and cellular mechanisms underlying the formation of these membrane interfaces are largely unknown. Recent studies strongly suggest that the Rhizobium-legume symbiosis coopted a signaling pathway, including receptor, from the more ancient arbuscular mycorrhizal symbiosis to form a symbiotic interface. Here, we show that two highly homologous exocytotic vesicle-associated membrane proteins (VAMPs) are required for formation of the symbiotic membrane interface in both interactions. Silencing of these Medicago VAMP72 genes has a minor effect on nonsymbiotic plant development and nodule formation. However, it blocks symbiosome as well as arbuscule formation, whereas root colonization by the microbes is not affected. Identification of these VAMP72s as common symbiotic regulators in exocytotic vesicle trafficking suggests that the ancient exocytotic pathway forming the periarbuscular membrane compartment has also been coopted in the Rhizobium-legume symbiosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22566631</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>109</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2012</Year>
<Month>May</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation.</ArticleTitle>
<Pagination>
<MedlinePgn>8316-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1200407109</ELocationID>
<Abstract>
<AbstractText>Endosymbiotic interactions are characterized by the formation of specialized membrane compartments, by the host in which the microbes are hosted, in an intracellular manner. Two well-studied examples, which are of major agricultural and ecological importance, are the widespread arbuscular mycorrhizal symbiosis and the Rhizobium-legume symbiosis. In both symbioses, the specialized host membrane that surrounds the microbes forms a symbiotic interface, which facilitates the exchange of, for example, nutrients in a controlled manner and, therefore, forms the heart of endosymbiosis. Despite their key importance, the molecular and cellular mechanisms underlying the formation of these membrane interfaces are largely unknown. Recent studies strongly suggest that the Rhizobium-legume symbiosis coopted a signaling pathway, including receptor, from the more ancient arbuscular mycorrhizal symbiosis to form a symbiotic interface. Here, we show that two highly homologous exocytotic vesicle-associated membrane proteins (VAMPs) are required for formation of the symbiotic membrane interface in both interactions. Silencing of these Medicago VAMP72 genes has a minor effect on nonsymbiotic plant development and nodule formation. However, it blocks symbiosome as well as arbuscule formation, whereas root colonization by the microbes is not affected. Identification of these VAMP72s as common symbiotic regulators in exocytotic vesicle trafficking suggests that the ancient exocytotic pathway forming the periarbuscular membrane compartment has also been coopted in the Rhizobium-legume symbiosis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ivanov</LastName>
<ForeName>Sergey</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fedorova</LastName>
<ForeName>Elena E</ForeName>
<Initials>EE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Limpens</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De Mita</LastName>
<ForeName>Stephane</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Genre</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bonfante</LastName>
<ForeName>Paola</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bisseling</LastName>
<ForeName>Ton</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050683">R-SNARE Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C570049">VAMP721 protein, Arabidopsis</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005089" MajorTopicYN="N">Exocytosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="Y">Fabaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="Y">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050683" MajorTopicYN="N">R-SNARE Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22566631</ArticleId>
<ArticleId IdType="pii">1200407109</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1200407109</ArticleId>
<ArticleId IdType="pmc">PMC3361388</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Bacteriol. 1990 Aug;172(8):4295-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2376562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Apr;16(4):836-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2005 May;15(5):277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15866032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):320-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Mar;180(4):537-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24202099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Feb;225(3):541-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16944200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(399):983-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):6-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 May;19(5):495-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16673936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Feb 18;331(6019):909-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Nov;24(11):1333-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21787150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1989 Jun;49(1):13-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2759097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Apr;172(4):2491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(3):504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18410479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Handb Exp Pharmacol. 2008;(184):107-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18064413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Dec 22;480(7378):520-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22089132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2011;45:119-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21838550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Nov;24(11):1345-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21692638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20540-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1081-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18209109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Nov 25;402(6760):402-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10586878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5145-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):575-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Sep;51(9):1381-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20660226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2811-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19734435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 14;451(7180):835-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18273019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):809-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22203959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Sep;13(9):492-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18701339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10375-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e26129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Apr;220(6):889-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15605243</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001F83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22566631
   |texte=   Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22566631" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020