Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis.

Identifieur interne : 001F10 ( Main/Corpus ); précédent : 001F09; suivant : 001F11

The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis.

Auteurs : Benjamin E. Wolfe ; Rodham E. Tulloss ; Anne Pringle

Source :

RBID : pubmed:22815710

English descriptors

Abstract

Microbial symbioses have evolved repeatedly across the tree of life, but the genetic changes underlying transitions to symbiosis are largely unknown, especially for eukaryotic microbial symbionts. We used the genus Amanita, an iconic group of mushroom-forming fungi engaged in ectomycorrhizal symbioses with plants, to identify both the origins and potential genetic changes maintaining the stability of this mutualism. A multi-gene phylogeny reveals one origin of the symbiosis within Amanita, with a single transition from saprotrophic decomposition of dead organic matter to biotrophic dependence on host plants for carbon. Associated with this transition are the losses of two cellulase genes, each of which plays a critical role in extracellular decomposition of organic matter. However a third gene, which acts at later stages in cellulose decomposition, is retained by many, but not all, ectomycorrhizal species. Experiments confirm that symbiotic Amanita species have lost the ability to grow on complex organic matter and have therefore lost the capacity to live in forest soils without carbon supplied by a host plant. Irreversible losses of decomposition pathways are likely to play key roles in the evolutionary stability of these ubiquitous mutualisms.

DOI: 10.1371/journal.pone.0039597
PubMed: 22815710
PubMed Central: PMC3399872

Links to Exploration step

pubmed:22815710

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis.</title>
<author>
<name sortKey="Wolfe, Benjamin E" sort="Wolfe, Benjamin E" uniqKey="Wolfe B" first="Benjamin E" last="Wolfe">Benjamin E. Wolfe</name>
<affiliation>
<nlm:affiliation>FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America. bewolfe@fas.harvard.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tulloss, Rodham E" sort="Tulloss, Rodham E" uniqKey="Tulloss R" first="Rodham E" last="Tulloss">Rodham E. Tulloss</name>
</author>
<author>
<name sortKey="Pringle, Anne" sort="Pringle, Anne" uniqKey="Pringle A" first="Anne" last="Pringle">Anne Pringle</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22815710</idno>
<idno type="pmid">22815710</idno>
<idno type="doi">10.1371/journal.pone.0039597</idno>
<idno type="pmc">PMC3399872</idno>
<idno type="wicri:Area/Main/Corpus">001F10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis.</title>
<author>
<name sortKey="Wolfe, Benjamin E" sort="Wolfe, Benjamin E" uniqKey="Wolfe B" first="Benjamin E" last="Wolfe">Benjamin E. Wolfe</name>
<affiliation>
<nlm:affiliation>FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America. bewolfe@fas.harvard.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tulloss, Rodham E" sort="Tulloss, Rodham E" uniqKey="Tulloss R" first="Rodham E" last="Tulloss">Rodham E. Tulloss</name>
</author>
<author>
<name sortKey="Pringle, Anne" sort="Pringle, Anne" uniqKey="Pringle A" first="Anne" last="Pringle">Anne Pringle</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amanita (genetics)</term>
<term>Amanita (growth & development)</term>
<term>Amanita (metabolism)</term>
<term>Cellulose (metabolism)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Genes, Fungal (genetics)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plants (MeSH)</term>
<term>Symbiosis (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amanita</term>
<term>Genes, Fungal</term>
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Amanita</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Amanita</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Phylogeny</term>
<term>Plants</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microbial symbioses have evolved repeatedly across the tree of life, but the genetic changes underlying transitions to symbiosis are largely unknown, especially for eukaryotic microbial symbionts. We used the genus Amanita, an iconic group of mushroom-forming fungi engaged in ectomycorrhizal symbioses with plants, to identify both the origins and potential genetic changes maintaining the stability of this mutualism. A multi-gene phylogeny reveals one origin of the symbiosis within Amanita, with a single transition from saprotrophic decomposition of dead organic matter to biotrophic dependence on host plants for carbon. Associated with this transition are the losses of two cellulase genes, each of which plays a critical role in extracellular decomposition of organic matter. However a third gene, which acts at later stages in cellulose decomposition, is retained by many, but not all, ectomycorrhizal species. Experiments confirm that symbiotic Amanita species have lost the ability to grow on complex organic matter and have therefore lost the capacity to live in forest soils without carbon supplied by a host plant. Irreversible losses of decomposition pathways are likely to play key roles in the evolutionary stability of these ubiquitous mutualisms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22815710</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis.</ArticleTitle>
<Pagination>
<MedlinePgn>e39597</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0039597</ELocationID>
<Abstract>
<AbstractText>Microbial symbioses have evolved repeatedly across the tree of life, but the genetic changes underlying transitions to symbiosis are largely unknown, especially for eukaryotic microbial symbionts. We used the genus Amanita, an iconic group of mushroom-forming fungi engaged in ectomycorrhizal symbioses with plants, to identify both the origins and potential genetic changes maintaining the stability of this mutualism. A multi-gene phylogeny reveals one origin of the symbiosis within Amanita, with a single transition from saprotrophic decomposition of dead organic matter to biotrophic dependence on host plants for carbon. Associated with this transition are the losses of two cellulase genes, each of which plays a critical role in extracellular decomposition of organic matter. However a third gene, which acts at later stages in cellulose decomposition, is retained by many, but not all, ectomycorrhizal species. Experiments confirm that symbiotic Amanita species have lost the ability to grow on complex organic matter and have therefore lost the capacity to live in forest soils without carbon supplied by a host plant. Irreversible losses of decomposition pathways are likely to play key roles in the evolutionary stability of these ubiquitous mutualisms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wolfe</LastName>
<ForeName>Benjamin E</ForeName>
<Initials>BE</Initials>
<AffiliationInfo>
<Affiliation>FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America. bewolfe@fas.harvard.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tulloss</LastName>
<ForeName>Rodham E</ForeName>
<Initials>RE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pringle</LastName>
<ForeName>Anne</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000545" MajorTopicYN="N">Amanita</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>02</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22815710</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0039597</ArticleId>
<ArticleId IdType="pii">PONE-D-12-03703</ArticleId>
<ArticleId IdType="pmc">PMC3399872</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycologia. 2012 Jan-Feb;104(1):22-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21914823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 May;17(3):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 1998;43:17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Oct;13(10):2778-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21883796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2006 Jul;19(4):1283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16780529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Oct;21(10):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:165-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):789-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18362345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2007 Feb;267(2):221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17169003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1999 Jul;261(6):985-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10485290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 28;407(6803):506-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11029000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 Nov-Dec;98(6):982-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2504-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21262841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15712-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20733067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Jun;74(11):3481-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):776-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2003 Oct;6(5):512-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14572545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 May;46(5):427-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19373972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Apr;89(4):1032-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jan 1;25(1):126-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Oct;161(4):657-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19685081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 Nov;268(22):5687-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Nov;15(7):513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Oct;161(4):661-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19685248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 15;464(7291):1033-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Oct;263(2):207-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16978358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2008 Oct;57(5):758-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18853362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 Mar;9(3):218-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18268509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2:10800-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21690339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biol. 2001 Jun;76(2):169-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2011 Jan;27(1):14-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21112661</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F10 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001F10 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22815710
   |texte=   The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22815710" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020