Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses.

Identifieur interne : 001E57 ( Main/Corpus ); précédent : 001E56; suivant : 001E58

Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses.

Auteurs : Alexandre Tromas ; Boris Parizot ; Nathalie Diagne ; Antony Champion ; Valérie Hocher ; Maïmouna Cissoko ; Amandine Crabos ; Hermann Prodjinoto ; Benoit Lahouze ; Didier Bogusz ; Laurent Laplaze ; Sergio Svistoonoff

Source :

RBID : pubmed:22970303

English descriptors

Abstract

To improve their nutrition, most plants associate with soil microorganisms, particularly fungi, to form mycorrhizae. A few lineages, including actinorhizal plants and legumes are also able to interact with nitrogen-fixing bacteria hosted intracellularly inside root nodules. Fossil and molecular data suggest that the molecular mechanisms involved in these root nodule symbioses (RNS) have been partially recycled from more ancient and widespread arbuscular mycorrhizal (AM) symbiosis. We used a comparative transcriptomics approach to identify genes involved in establishing these 3 endosymbioses and their functioning. We analysed global changes in gene expression in AM in the actinorhizal tree C. glauca. A comparison with genes induced in AM in Medicago truncatula and Oryza sativa revealed a common set of genes induced in AM. A comparison with genes induced in nitrogen-fixing nodules of C. glauca and M. truncatula also made it possible to define a common set of genes induced in these three endosymbioses. The existence of this core set of genes is in accordance with the proposed recycling of ancient AM genes for new functions related to nodulation in legumes and actinorhizal plants.

DOI: 10.1371/journal.pone.0044742
PubMed: 22970303
PubMed Central: PMC3435296

Links to Exploration step

pubmed:22970303

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses.</title>
<author>
<name sortKey="Tromas, Alexandre" sort="Tromas, Alexandre" uniqKey="Tromas A" first="Alexandre" last="Tromas">Alexandre Tromas</name>
<affiliation>
<nlm:affiliation>Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parizot, Boris" sort="Parizot, Boris" uniqKey="Parizot B" first="Boris" last="Parizot">Boris Parizot</name>
</author>
<author>
<name sortKey="Diagne, Nathalie" sort="Diagne, Nathalie" uniqKey="Diagne N" first="Nathalie" last="Diagne">Nathalie Diagne</name>
</author>
<author>
<name sortKey="Champion, Antony" sort="Champion, Antony" uniqKey="Champion A" first="Antony" last="Champion">Antony Champion</name>
</author>
<author>
<name sortKey="Hocher, Valerie" sort="Hocher, Valerie" uniqKey="Hocher V" first="Valérie" last="Hocher">Valérie Hocher</name>
</author>
<author>
<name sortKey="Cissoko, Maimouna" sort="Cissoko, Maimouna" uniqKey="Cissoko M" first="Maïmouna" last="Cissoko">Maïmouna Cissoko</name>
</author>
<author>
<name sortKey="Crabos, Amandine" sort="Crabos, Amandine" uniqKey="Crabos A" first="Amandine" last="Crabos">Amandine Crabos</name>
</author>
<author>
<name sortKey="Prodjinoto, Hermann" sort="Prodjinoto, Hermann" uniqKey="Prodjinoto H" first="Hermann" last="Prodjinoto">Hermann Prodjinoto</name>
</author>
<author>
<name sortKey="Lahouze, Benoit" sort="Lahouze, Benoit" uniqKey="Lahouze B" first="Benoit" last="Lahouze">Benoit Lahouze</name>
</author>
<author>
<name sortKey="Bogusz, Didier" sort="Bogusz, Didier" uniqKey="Bogusz D" first="Didier" last="Bogusz">Didier Bogusz</name>
</author>
<author>
<name sortKey="Laplaze, Laurent" sort="Laplaze, Laurent" uniqKey="Laplaze L" first="Laurent" last="Laplaze">Laurent Laplaze</name>
</author>
<author>
<name sortKey="Svistoonoff, Sergio" sort="Svistoonoff, Sergio" uniqKey="Svistoonoff S" first="Sergio" last="Svistoonoff">Sergio Svistoonoff</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22970303</idno>
<idno type="pmid">22970303</idno>
<idno type="doi">10.1371/journal.pone.0044742</idno>
<idno type="pmc">PMC3435296</idno>
<idno type="wicri:Area/Main/Corpus">001E57</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E57</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses.</title>
<author>
<name sortKey="Tromas, Alexandre" sort="Tromas, Alexandre" uniqKey="Tromas A" first="Alexandre" last="Tromas">Alexandre Tromas</name>
<affiliation>
<nlm:affiliation>Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parizot, Boris" sort="Parizot, Boris" uniqKey="Parizot B" first="Boris" last="Parizot">Boris Parizot</name>
</author>
<author>
<name sortKey="Diagne, Nathalie" sort="Diagne, Nathalie" uniqKey="Diagne N" first="Nathalie" last="Diagne">Nathalie Diagne</name>
</author>
<author>
<name sortKey="Champion, Antony" sort="Champion, Antony" uniqKey="Champion A" first="Antony" last="Champion">Antony Champion</name>
</author>
<author>
<name sortKey="Hocher, Valerie" sort="Hocher, Valerie" uniqKey="Hocher V" first="Valérie" last="Hocher">Valérie Hocher</name>
</author>
<author>
<name sortKey="Cissoko, Maimouna" sort="Cissoko, Maimouna" uniqKey="Cissoko M" first="Maïmouna" last="Cissoko">Maïmouna Cissoko</name>
</author>
<author>
<name sortKey="Crabos, Amandine" sort="Crabos, Amandine" uniqKey="Crabos A" first="Amandine" last="Crabos">Amandine Crabos</name>
</author>
<author>
<name sortKey="Prodjinoto, Hermann" sort="Prodjinoto, Hermann" uniqKey="Prodjinoto H" first="Hermann" last="Prodjinoto">Hermann Prodjinoto</name>
</author>
<author>
<name sortKey="Lahouze, Benoit" sort="Lahouze, Benoit" uniqKey="Lahouze B" first="Benoit" last="Lahouze">Benoit Lahouze</name>
</author>
<author>
<name sortKey="Bogusz, Didier" sort="Bogusz, Didier" uniqKey="Bogusz D" first="Didier" last="Bogusz">Didier Bogusz</name>
</author>
<author>
<name sortKey="Laplaze, Laurent" sort="Laplaze, Laurent" uniqKey="Laplaze L" first="Laurent" last="Laplaze">Laurent Laplaze</name>
</author>
<author>
<name sortKey="Svistoonoff, Sergio" sort="Svistoonoff, Sergio" uniqKey="Svistoonoff S" first="Sergio" last="Svistoonoff">Sergio Svistoonoff</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fabaceae (genetics)</term>
<term>Fabaceae (physiology)</term>
<term>Gene Expression (MeSH)</term>
<term>Genes, Bacterial (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Rhizobium (genetics)</term>
<term>Rhizobium (physiology)</term>
<term>Symbiosis (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fabaceae</term>
<term>Mycorrhizae</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fabaceae</term>
<term>Mycorrhizae</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression</term>
<term>Genes, Bacterial</term>
<term>Genes, Fungal</term>
<term>Genes, Plant</term>
<term>Symbiosis</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To improve their nutrition, most plants associate with soil microorganisms, particularly fungi, to form mycorrhizae. A few lineages, including actinorhizal plants and legumes are also able to interact with nitrogen-fixing bacteria hosted intracellularly inside root nodules. Fossil and molecular data suggest that the molecular mechanisms involved in these root nodule symbioses (RNS) have been partially recycled from more ancient and widespread arbuscular mycorrhizal (AM) symbiosis. We used a comparative transcriptomics approach to identify genes involved in establishing these 3 endosymbioses and their functioning. We analysed global changes in gene expression in AM in the actinorhizal tree C. glauca. A comparison with genes induced in AM in Medicago truncatula and Oryza sativa revealed a common set of genes induced in AM. A comparison with genes induced in nitrogen-fixing nodules of C. glauca and M. truncatula also made it possible to define a common set of genes induced in these three endosymbioses. The existence of this core set of genes is in accordance with the proposed recycling of ancient AM genes for new functions related to nodulation in legumes and actinorhizal plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22970303</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses.</ArticleTitle>
<Pagination>
<MedlinePgn>e44742</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0044742</ELocationID>
<Abstract>
<AbstractText>To improve their nutrition, most plants associate with soil microorganisms, particularly fungi, to form mycorrhizae. A few lineages, including actinorhizal plants and legumes are also able to interact with nitrogen-fixing bacteria hosted intracellularly inside root nodules. Fossil and molecular data suggest that the molecular mechanisms involved in these root nodule symbioses (RNS) have been partially recycled from more ancient and widespread arbuscular mycorrhizal (AM) symbiosis. We used a comparative transcriptomics approach to identify genes involved in establishing these 3 endosymbioses and their functioning. We analysed global changes in gene expression in AM in the actinorhizal tree C. glauca. A comparison with genes induced in AM in Medicago truncatula and Oryza sativa revealed a common set of genes induced in AM. A comparison with genes induced in nitrogen-fixing nodules of C. glauca and M. truncatula also made it possible to define a common set of genes induced in these three endosymbioses. The existence of this core set of genes is in accordance with the proposed recycling of ancient AM genes for new functions related to nodulation in legumes and actinorhizal plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tromas</LastName>
<ForeName>Alexandre</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parizot</LastName>
<ForeName>Boris</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Diagne</LastName>
<ForeName>Nathalie</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Champion</LastName>
<ForeName>Antony</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hocher</LastName>
<ForeName>Valérie</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cissoko</LastName>
<ForeName>Maïmouna</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Crabos</LastName>
<ForeName>Amandine</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prodjinoto</LastName>
<ForeName>Hermann</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lahouze</LastName>
<ForeName>Benoit</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bogusz</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laplaze</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Svistoonoff</LastName>
<ForeName>Sergio</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="N">Fabaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22970303</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0044742</ArticleId>
<ArticleId IdType="pii">PONE-D-12-13188</ArticleId>
<ArticleId IdType="pmc">PMC3435296</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Protein Pept Sci. 2011 Mar;12(2):156-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21348842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Jul;16(7):600-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12848425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1063-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2007 Jun 30;14(3):117-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17634281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):700-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21464474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2023-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22034628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jun;58(5):766-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19220794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):438-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22633856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Oct;15(10):540-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20829094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Nov;24(11):1289-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jun;190(4):815-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21561457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jan;13(1):113-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 May;21(4):315-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21225294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Aug;167(2):557-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jan 22;9:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19161626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1283-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21941000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):8066-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Mar 4;6(3):e68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18318603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30231-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11346655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 15;289(5486):1920-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10988069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(3):504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18410479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2012 Oct;249(4):967-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22398987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Jun;23(6):740-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20459313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Nov;151(3):1239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19776163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Aug;59(3):461-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19392709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Dec;184(4):975-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Sep;12(9):1647-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2011 Apr;68(8):1341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21380559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):122-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17109903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4928-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2010 Oct;26(10):425-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1574-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20081044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19892822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2006 Feb;32(1):99-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16477138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1483-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20453115</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E57 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001E57 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22970303
   |texte=   Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22970303" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020