Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.

Identifieur interne : 001E54 ( Main/Corpus ); précédent : 001E53; suivant : 001E55

The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.

Auteurs : Carl R. Fellbaum ; Jerry A. Mensah ; Philip E. Pfeffer ; E Toby Kiers ; Heike Bücking

Source :

RBID : pubmed:22990447

English descriptors

Abstract

The arbuscular mycorrhizal (AM) symbiosis, which forms between plant hosts and ubiquitous soil fungi of the phylum Glomeromycota, plays a key role for the nutrient uptake of the majority of land plants, including many economically important crop species. AM fungi take up nutrients from the soil and exchange them for photosynthetically fixed carbon from the host. While our understanding of the exact mechanisms controlling carbon and nutrient exchange is still limited, we recently demonstrated that (i) carbon acts as an important trigger for fungal N uptake and transport, (ii) the fungus changes its strategy in response to an exogenous supply of carbon, and that (iii) both plants and fungi reciprocally reward resources to those partners providing more benefit. Here, we summarize recent research findings and discuss the implications of these results for fungal and plant control of resource exchange in the AM symbiosis.

DOI: 10.4161/psb.22015
PubMed: 22990447
PubMed Central: PMC3548883

Links to Exploration step

pubmed:22990447

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Fellbaum, Carl R" sort="Fellbaum, Carl R" uniqKey="Fellbaum C" first="Carl R" last="Fellbaum">Carl R. Fellbaum</name>
<affiliation>
<nlm:affiliation>Biology and Microbiology Department, South Dakota State University, Brookings, SD, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mensah, Jerry A" sort="Mensah, Jerry A" uniqKey="Mensah J" first="Jerry A" last="Mensah">Jerry A. Mensah</name>
</author>
<author>
<name sortKey="Pfeffer, Philip E" sort="Pfeffer, Philip E" uniqKey="Pfeffer P" first="Philip E" last="Pfeffer">Philip E. Pfeffer</name>
</author>
<author>
<name sortKey="Kiers, E Toby" sort="Kiers, E Toby" uniqKey="Kiers E" first="E Toby" last="Kiers">E Toby Kiers</name>
</author>
<author>
<name sortKey="Bucking, Heike" sort="Bucking, Heike" uniqKey="Bucking H" first="Heike" last="Bücking">Heike Bücking</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22990447</idno>
<idno type="pmid">22990447</idno>
<idno type="doi">10.4161/psb.22015</idno>
<idno type="pmc">PMC3548883</idno>
<idno type="wicri:Area/Main/Corpus">001E54</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Fellbaum, Carl R" sort="Fellbaum, Carl R" uniqKey="Fellbaum C" first="Carl R" last="Fellbaum">Carl R. Fellbaum</name>
<affiliation>
<nlm:affiliation>Biology and Microbiology Department, South Dakota State University, Brookings, SD, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mensah, Jerry A" sort="Mensah, Jerry A" uniqKey="Mensah J" first="Jerry A" last="Mensah">Jerry A. Mensah</name>
</author>
<author>
<name sortKey="Pfeffer, Philip E" sort="Pfeffer, Philip E" uniqKey="Pfeffer P" first="Philip E" last="Pfeffer">Philip E. Pfeffer</name>
</author>
<author>
<name sortKey="Kiers, E Toby" sort="Kiers, E Toby" uniqKey="Kiers E" first="E Toby" last="Kiers">E Toby Kiers</name>
</author>
<author>
<name sortKey="Bucking, Heike" sort="Bucking, Heike" uniqKey="Bucking H" first="Heike" last="Bücking">Heike Bücking</name>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (physiology)</term>
<term>Carbon (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Biological Transport</term>
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The arbuscular mycorrhizal (AM) symbiosis, which forms between plant hosts and ubiquitous soil fungi of the phylum Glomeromycota, plays a key role for the nutrient uptake of the majority of land plants, including many economically important crop species. AM fungi take up nutrients from the soil and exchange them for photosynthetically fixed carbon from the host. While our understanding of the exact mechanisms controlling carbon and nutrient exchange is still limited, we recently demonstrated that (i) carbon acts as an important trigger for fungal N uptake and transport, (ii) the fungus changes its strategy in response to an exogenous supply of carbon, and that (iii) both plants and fungi reciprocally reward resources to those partners providing more benefit. Here, we summarize recent research findings and discuss the implications of these results for fungal and plant control of resource exchange in the AM symbiosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22990447</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.</ArticleTitle>
<Pagination>
<MedlinePgn>1509-12</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/psb.22015</ELocationID>
<Abstract>
<AbstractText>The arbuscular mycorrhizal (AM) symbiosis, which forms between plant hosts and ubiquitous soil fungi of the phylum Glomeromycota, plays a key role for the nutrient uptake of the majority of land plants, including many economically important crop species. AM fungi take up nutrients from the soil and exchange them for photosynthetically fixed carbon from the host. While our understanding of the exact mechanisms controlling carbon and nutrient exchange is still limited, we recently demonstrated that (i) carbon acts as an important trigger for fungal N uptake and transport, (ii) the fungus changes its strategy in response to an exogenous supply of carbon, and that (iii) both plants and fungi reciprocally reward resources to those partners providing more benefit. Here, we summarize recent research findings and discuss the implications of these results for fungal and plant control of resource exchange in the AM symbiosis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fellbaum</LastName>
<ForeName>Carl R</ForeName>
<Initials>CR</Initials>
<AffiliationInfo>
<Affiliation>Biology and Microbiology Department, South Dakota State University, Brookings, SD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mensah</LastName>
<ForeName>Jerry A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pfeffer</LastName>
<ForeName>Philip E</ForeName>
<Initials>PE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kiers</LastName>
<ForeName>E Toby</ForeName>
<Initials>ET</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bücking</LastName>
<ForeName>Heike</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">arginase</Keyword>
<Keyword MajorTopicYN="N">arginine</Keyword>
<Keyword MajorTopicYN="N">carbon</Keyword>
<Keyword MajorTopicYN="N">common mycelial network</Keyword>
<Keyword MajorTopicYN="N">interface</Keyword>
<Keyword MajorTopicYN="N">mutualism</Keyword>
<Keyword MajorTopicYN="N">nitrogen transport</Keyword>
<Keyword MajorTopicYN="N">urea cycle</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22990447</ArticleId>
<ArticleId IdType="pii">22015</ArticleId>
<ArticleId IdType="doi">10.4161/psb.22015</ArticleId>
<ArticleId IdType="pmc">PMC3548883</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1827-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Oct;14(10):1140-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11605953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Apr;229(5):1023-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19169704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19329566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):1002-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 May;76(2):236-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:227-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21391813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1190-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Feb;25(3):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009;9:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19566942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Oct;16(10):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14558692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Mar;165(3):899-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Nov;15(8):620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):299-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(15):4015-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17050639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Nov;48(11):1044-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21907817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Oct;23(10):3812-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21972259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Dec;68(6):954-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jun;159(2):789-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 5;283(36):24673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596039</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001E54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22990447
   |texte=   The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22990447" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020