Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family.

Identifieur interne : 001E25 ( Main/Corpus ); précédent : 001E24; suivant : 001E26

Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family.

Auteurs : Shu-Yi Yang ; Mette Gr Nlund ; Iver Jakobsen ; Marianne Suter Grotemeyer ; Doris Rentsch ; Akio Miyao ; Hirohiko Hirochika ; Chellian Santhosh Kumar ; Venkatesan Sundaresan ; Nicolas Salamin ; Sheryl Catausan ; Nicolas Mattes ; Sigrid Heuer ; Uta Paszkowski

Source :

RBID : pubmed:23073651

English descriptors

Abstract

Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.

DOI: 10.1105/tpc.112.104901
PubMed: 23073651
PubMed Central: PMC3517247

Links to Exploration step

pubmed:23073651

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family.</title>
<author>
<name sortKey="Yang, Shu Yi" sort="Yang, Shu Yi" uniqKey="Yang S" first="Shu-Yi" last="Yang">Shu-Yi Yang</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, University of Lausane, CH-1015 Lausane, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gr Nlund, Mette" sort="Gr Nlund, Mette" uniqKey="Gr Nlund M" first="Mette" last="Gr Nlund">Mette Gr Nlund</name>
</author>
<author>
<name sortKey="Jakobsen, Iver" sort="Jakobsen, Iver" uniqKey="Jakobsen I" first="Iver" last="Jakobsen">Iver Jakobsen</name>
</author>
<author>
<name sortKey="Grotemeyer, Marianne Suter" sort="Grotemeyer, Marianne Suter" uniqKey="Grotemeyer M" first="Marianne Suter" last="Grotemeyer">Marianne Suter Grotemeyer</name>
</author>
<author>
<name sortKey="Rentsch, Doris" sort="Rentsch, Doris" uniqKey="Rentsch D" first="Doris" last="Rentsch">Doris Rentsch</name>
</author>
<author>
<name sortKey="Miyao, Akio" sort="Miyao, Akio" uniqKey="Miyao A" first="Akio" last="Miyao">Akio Miyao</name>
</author>
<author>
<name sortKey="Hirochika, Hirohiko" sort="Hirochika, Hirohiko" uniqKey="Hirochika H" first="Hirohiko" last="Hirochika">Hirohiko Hirochika</name>
</author>
<author>
<name sortKey="Kumar, Chellian Santhosh" sort="Kumar, Chellian Santhosh" uniqKey="Kumar C" first="Chellian Santhosh" last="Kumar">Chellian Santhosh Kumar</name>
</author>
<author>
<name sortKey="Sundaresan, Venkatesan" sort="Sundaresan, Venkatesan" uniqKey="Sundaresan V" first="Venkatesan" last="Sundaresan">Venkatesan Sundaresan</name>
</author>
<author>
<name sortKey="Salamin, Nicolas" sort="Salamin, Nicolas" uniqKey="Salamin N" first="Nicolas" last="Salamin">Nicolas Salamin</name>
</author>
<author>
<name sortKey="Catausan, Sheryl" sort="Catausan, Sheryl" uniqKey="Catausan S" first="Sheryl" last="Catausan">Sheryl Catausan</name>
</author>
<author>
<name sortKey="Mattes, Nicolas" sort="Mattes, Nicolas" uniqKey="Mattes N" first="Nicolas" last="Mattes">Nicolas Mattes</name>
</author>
<author>
<name sortKey="Heuer, Sigrid" sort="Heuer, Sigrid" uniqKey="Heuer S" first="Sigrid" last="Heuer">Sigrid Heuer</name>
</author>
<author>
<name sortKey="Paszkowski, Uta" sort="Paszkowski, Uta" uniqKey="Paszkowski U" first="Uta" last="Paszkowski">Uta Paszkowski</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23073651</idno>
<idno type="pmid">23073651</idno>
<idno type="doi">10.1105/tpc.112.104901</idno>
<idno type="pmc">PMC3517247</idno>
<idno type="wicri:Area/Main/Corpus">001E25</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E25</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family.</title>
<author>
<name sortKey="Yang, Shu Yi" sort="Yang, Shu Yi" uniqKey="Yang S" first="Shu-Yi" last="Yang">Shu-Yi Yang</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, University of Lausane, CH-1015 Lausane, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gr Nlund, Mette" sort="Gr Nlund, Mette" uniqKey="Gr Nlund M" first="Mette" last="Gr Nlund">Mette Gr Nlund</name>
</author>
<author>
<name sortKey="Jakobsen, Iver" sort="Jakobsen, Iver" uniqKey="Jakobsen I" first="Iver" last="Jakobsen">Iver Jakobsen</name>
</author>
<author>
<name sortKey="Grotemeyer, Marianne Suter" sort="Grotemeyer, Marianne Suter" uniqKey="Grotemeyer M" first="Marianne Suter" last="Grotemeyer">Marianne Suter Grotemeyer</name>
</author>
<author>
<name sortKey="Rentsch, Doris" sort="Rentsch, Doris" uniqKey="Rentsch D" first="Doris" last="Rentsch">Doris Rentsch</name>
</author>
<author>
<name sortKey="Miyao, Akio" sort="Miyao, Akio" uniqKey="Miyao A" first="Akio" last="Miyao">Akio Miyao</name>
</author>
<author>
<name sortKey="Hirochika, Hirohiko" sort="Hirochika, Hirohiko" uniqKey="Hirochika H" first="Hirohiko" last="Hirochika">Hirohiko Hirochika</name>
</author>
<author>
<name sortKey="Kumar, Chellian Santhosh" sort="Kumar, Chellian Santhosh" uniqKey="Kumar C" first="Chellian Santhosh" last="Kumar">Chellian Santhosh Kumar</name>
</author>
<author>
<name sortKey="Sundaresan, Venkatesan" sort="Sundaresan, Venkatesan" uniqKey="Sundaresan V" first="Venkatesan" last="Sundaresan">Venkatesan Sundaresan</name>
</author>
<author>
<name sortKey="Salamin, Nicolas" sort="Salamin, Nicolas" uniqKey="Salamin N" first="Nicolas" last="Salamin">Nicolas Salamin</name>
</author>
<author>
<name sortKey="Catausan, Sheryl" sort="Catausan, Sheryl" uniqKey="Catausan S" first="Sheryl" last="Catausan">Sheryl Catausan</name>
</author>
<author>
<name sortKey="Mattes, Nicolas" sort="Mattes, Nicolas" uniqKey="Mattes N" first="Nicolas" last="Mattes">Nicolas Mattes</name>
</author>
<author>
<name sortKey="Heuer, Sigrid" sort="Heuer, Sigrid" uniqKey="Heuer S" first="Sigrid" last="Heuer">Sigrid Heuer</name>
</author>
<author>
<name sortKey="Paszkowski, Uta" sort="Paszkowski, Uta" uniqKey="Paszkowski U" first="Uta" last="Paszkowski">Uta Paszkowski</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="eISSN">1532-298X</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Open Reading Frames (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Oryza (microbiology)</term>
<term>Phosphate Transport Proteins (genetics)</term>
<term>Phosphate Transport Proteins (metabolism)</term>
<term>Phosphate Transport Proteins (physiology)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Proteins (physiology)</term>
<term>Symbiosis (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphate Transport Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
<term>Oryza</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphate Transport Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Phosphate Transport Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Mutation</term>
<term>Open Reading Frames</term>
<term>Phylogeny</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23073651</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-298X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family.</ArticleTitle>
<Pagination>
<MedlinePgn>4236-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1105/tpc.112.104901</ELocationID>
<Abstract>
<AbstractText>Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Shu-Yi</ForeName>
<Initials>SY</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Molecular Biology, University of Lausane, CH-1015 Lausane, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grønlund</LastName>
<ForeName>Mette</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jakobsen</LastName>
<ForeName>Iver</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grotemeyer</LastName>
<ForeName>Marianne Suter</ForeName>
<Initials>MS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rentsch</LastName>
<ForeName>Doris</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miyao</LastName>
<ForeName>Akio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hirochika</LastName>
<ForeName>Hirohiko</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Chellian Santhosh</ForeName>
<Initials>CS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sundaresan</LastName>
<ForeName>Venkatesan</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Salamin</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Catausan</LastName>
<ForeName>Sheryl</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mattes</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Heuer</LastName>
<ForeName>Sigrid</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Paszkowski</LastName>
<ForeName>Uta</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028061">Phosphate Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028061" MajorTopicYN="N">Phosphate Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23073651</ArticleId>
<ArticleId IdType="pii">tpc.112.104901</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.112.104901</ArticleId>
<ArticleId IdType="pmc">PMC3517247</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2006 Sep;47(6):969-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16961734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Mar;8(2):186-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16547863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2012 Aug;13(8):1090-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22537078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Mar;30(3):310-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1164-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(4):688-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):753-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Mar;57(5):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19000161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Dec;68(6):954-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Mar;51(3):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):1002-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1991 Oct;7(7):691-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1776359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Nov;20(11):2989-3005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):8066-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):2141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21705655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2011 Jun;11(2):259-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21221698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Aug 21;370(3):264-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7656990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 May 20;332(6032):960-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1771-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(5):879-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Feb;130(4):645-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12505996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Nov;26(11):2407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19651853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Mar;69(5):906-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22077667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1571-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22649273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1998 Jun;258(6):628-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):514-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20059702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Jul;55(5):727-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Nov;24(11):1296-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Apr;42(2):236-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15807785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Mar;57(5):798-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18980647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Sep;236(3):851-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22711284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jul;47(2):165-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 May;106(8):1396-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12677401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 22;414(6862):462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jun;129(2):886-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12068127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):988-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jun;147(2):897-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Jun;235(6):1431-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Feb;24(2):260-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21043574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2011 Jul;21(5):1696-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21830711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(4):629-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1101-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2004 Oct;29(10):556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15450611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Apr;45(4):490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W678-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1998 Oct;206(2):225-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9737001</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001E25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23073651
   |texte=   Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23073651" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020