Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach.

Identifieur interne : 001D59 ( Main/Corpus ); précédent : 001D58; suivant : 001D60

Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach.

Auteurs : Milan Gryndler ; Jana Tril Ová ; Hana Hršelová ; Eva Streiblová ; Hana Gryndlerová ; Jan Jansa

Source :

RBID : pubmed:23271632

English descriptors

Abstract

A quantitative real-time PCR (qPCR) marker Ta0 with hydrolysis probe ("TaqMan"), targeted to the internal transcribed spacer region of the ribosomal DNA, has been developed for quantification of summer truffle (Tuber aestivum) mycelium. Gene copy concentrations determined by the qPCR were calibrated against pure culture mycelium of T. aestivum, enabling quantification of the mycelium in soil and in host roots from the fields. Significant concentrations of the fungus were observed not only in the finest roots with ectomycorrhizae but also in other root types, indicating that the fungus is an important component of the microbial film at the root surface. The concentration of T. aestivum in soil is relatively high compared to other ectomycorrhizal fungi. To evaluate the reliability of the measurement of the soil mycelium density using qPCR, the steady basal extracellular concentration of the stabilized T. aestivum DNA should be known and taken into account. Therefore, we addressed the stability of the qPCR signal in soil subjected to different treatments. After the field soil was sieved, regardless of whether it was dried/rewetted or not, the T. aestivum DNA was quickly decomposed. It took just about 4 days to reach a steady concentration. This represents a conserved pool of T. aestivum DNA and determines detection limit of the qPCR quantification in our case. When the soil was autoclaved and recolonized by saprotrophic microorganisms, this conserved DNA pool was eliminated and the soil became free of T. aestivum DNA.

DOI: 10.1007/s00572-012-0475-6
PubMed: 23271632

Links to Exploration step

pubmed:23271632

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach.</title>
<author>
<name sortKey="Gryndler, Milan" sort="Gryndler, Milan" uniqKey="Gryndler M" first="Milan" last="Gryndler">Milan Gryndler</name>
<affiliation>
<nlm:affiliation>Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4, Czech Republic. gryndler@biomed.cas.cz</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tril Ova, Jana" sort="Tril Ova, Jana" uniqKey="Tril Ova J" first="Jana" last="Tril Ová">Jana Tril Ová</name>
</author>
<author>
<name sortKey="Hrselova, Hana" sort="Hrselova, Hana" uniqKey="Hrselova H" first="Hana" last="Hršelová">Hana Hršelová</name>
</author>
<author>
<name sortKey="Streiblova, Eva" sort="Streiblova, Eva" uniqKey="Streiblova E" first="Eva" last="Streiblová">Eva Streiblová</name>
</author>
<author>
<name sortKey="Gryndlerova, Hana" sort="Gryndlerova, Hana" uniqKey="Gryndlerova H" first="Hana" last="Gryndlerová">Hana Gryndlerová</name>
</author>
<author>
<name sortKey="Jansa, Jan" sort="Jansa, Jan" uniqKey="Jansa J" first="Jan" last="Jansa">Jan Jansa</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23271632</idno>
<idno type="pmid">23271632</idno>
<idno type="doi">10.1007/s00572-012-0475-6</idno>
<idno type="wicri:Area/Main/Corpus">001D59</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D59</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach.</title>
<author>
<name sortKey="Gryndler, Milan" sort="Gryndler, Milan" uniqKey="Gryndler M" first="Milan" last="Gryndler">Milan Gryndler</name>
<affiliation>
<nlm:affiliation>Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4, Czech Republic. gryndler@biomed.cas.cz</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tril Ova, Jana" sort="Tril Ova, Jana" uniqKey="Tril Ova J" first="Jana" last="Tril Ová">Jana Tril Ová</name>
</author>
<author>
<name sortKey="Hrselova, Hana" sort="Hrselova, Hana" uniqKey="Hrselova H" first="Hana" last="Hršelová">Hana Hršelová</name>
</author>
<author>
<name sortKey="Streiblova, Eva" sort="Streiblova, Eva" uniqKey="Streiblova E" first="Eva" last="Streiblová">Eva Streiblová</name>
</author>
<author>
<name sortKey="Gryndlerova, Hana" sort="Gryndlerova, Hana" uniqKey="Gryndlerova H" first="Hana" last="Gryndlerová">Hana Gryndlerová</name>
</author>
<author>
<name sortKey="Jansa, Jan" sort="Jansa, Jan" uniqKey="Jansa J" first="Jan" last="Jansa">Jan Jansa</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascomycota (genetics)</term>
<term>Ascomycota (growth & development)</term>
<term>Ascomycota (isolation & purification)</term>
<term>DNA, Fungal (genetics)</term>
<term>Mycelium (genetics)</term>
<term>Mycelium (growth & development)</term>
<term>Mycelium (isolation & purification)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Plant Roots (microbiology)</term>
<term>Real-Time Polymerase Chain Reaction (methods)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Ascomycota</term>
<term>Mycelium</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Ascomycota</term>
<term>Mycelium</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Ascomycota</term>
<term>Mycelium</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Real-Time Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A quantitative real-time PCR (qPCR) marker Ta0 with hydrolysis probe ("TaqMan"), targeted to the internal transcribed spacer region of the ribosomal DNA, has been developed for quantification of summer truffle (Tuber aestivum) mycelium. Gene copy concentrations determined by the qPCR were calibrated against pure culture mycelium of T. aestivum, enabling quantification of the mycelium in soil and in host roots from the fields. Significant concentrations of the fungus were observed not only in the finest roots with ectomycorrhizae but also in other root types, indicating that the fungus is an important component of the microbial film at the root surface. The concentration of T. aestivum in soil is relatively high compared to other ectomycorrhizal fungi. To evaluate the reliability of the measurement of the soil mycelium density using qPCR, the steady basal extracellular concentration of the stabilized T. aestivum DNA should be known and taken into account. Therefore, we addressed the stability of the qPCR signal in soil subjected to different treatments. After the field soil was sieved, regardless of whether it was dried/rewetted or not, the T. aestivum DNA was quickly decomposed. It took just about 4 days to reach a steady concentration. This represents a conserved pool of T. aestivum DNA and determines detection limit of the qPCR quantification in our case. When the soil was autoclaved and recolonized by saprotrophic microorganisms, this conserved DNA pool was eliminated and the soil became free of T. aestivum DNA.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23271632</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach.</ArticleTitle>
<Pagination>
<MedlinePgn>341-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-012-0475-6</ELocationID>
<Abstract>
<AbstractText>A quantitative real-time PCR (qPCR) marker Ta0 with hydrolysis probe ("TaqMan"), targeted to the internal transcribed spacer region of the ribosomal DNA, has been developed for quantification of summer truffle (Tuber aestivum) mycelium. Gene copy concentrations determined by the qPCR were calibrated against pure culture mycelium of T. aestivum, enabling quantification of the mycelium in soil and in host roots from the fields. Significant concentrations of the fungus were observed not only in the finest roots with ectomycorrhizae but also in other root types, indicating that the fungus is an important component of the microbial film at the root surface. The concentration of T. aestivum in soil is relatively high compared to other ectomycorrhizal fungi. To evaluate the reliability of the measurement of the soil mycelium density using qPCR, the steady basal extracellular concentration of the stabilized T. aestivum DNA should be known and taken into account. Therefore, we addressed the stability of the qPCR signal in soil subjected to different treatments. After the field soil was sieved, regardless of whether it was dried/rewetted or not, the T. aestivum DNA was quickly decomposed. It took just about 4 days to reach a steady concentration. This represents a conserved pool of T. aestivum DNA and determines detection limit of the qPCR quantification in our case. When the soil was autoclaved and recolonized by saprotrophic microorganisms, this conserved DNA pool was eliminated and the soil became free of T. aestivum DNA.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gryndler</LastName>
<ForeName>Milan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4, Czech Republic. gryndler@biomed.cas.cz</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Trilčová</LastName>
<ForeName>Jana</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hršelová</LastName>
<ForeName>Hana</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Streiblová</LastName>
<ForeName>Eva</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gryndlerová</LastName>
<ForeName>Hana</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jansa</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>12</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>09</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23271632</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-012-0475-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 1996 Jul;70(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8836436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2004 Feb 1;47(2):143-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Feb;18(2):69-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Jan;22(1):59-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21494822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Aug;21(15):3647-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22507540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2005 Nov;7(6):713-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2011 May;318(1):84-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21385201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2008 Aug;285(1):72-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18510558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2012 Mar;12(2):219-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22059700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2007 Jan 30;128(1):14-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17055100</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D59 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001D59 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23271632
   |texte=   Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23271632" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020