Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum.

Identifieur interne : 001D00 ( Main/Corpus ); précédent : 001C99; suivant : 001D01

Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum.

Auteurs : S. Uroz ; P E Courty ; J C Pierrat ; M. Peter ; M. Buée ; M P Turpault ; J. Garbaye ; P. Frey-Klett

Source :

RBID : pubmed:23455431

English descriptors

Abstract

An ectomycorrhiza is a multitrophic association between a tree root, an ectomycorrhizal fungus, free-living fungi and the associated bacterial communities. Enzymatic activities of ectomycorrhizal root tips are therefore result of the contribution from different partners of the symbiotic organ. However, the functional potential of the fungus-associated bacterial communities remains unknown. In this study, a collection of 80 bacterial strains randomly selected and isolated from a soil-ectomycorrhiza continuum (oak-Scleroderma citrinum ectomycorrhizas, the ectomycorrhizosphere and the surrounding bulk soil) were characterized. All the bacterial isolates were identified by partial 16S rRNA gene sequences as members of the genera Burkholderia, Collimonas, Dyella, Mesorhizobium, Pseudomonas, Rhizobium and Sphingomonas. The bacterial strains were then assayed for β-xylosidase, β-glucosidase, N-acetyl-hexosaminidase, β-glucuronidase, cellobiohydrolase, phosphomonoesterase, leucine-aminopeptidase and laccase activities, chitin solubilization and auxin production. Using these bioassays, we demonstrated significant differences in the functional distribution of the bacterial communities living in the different compartments of the soil-ectomycorrhiza continuum. The surrounding bulk soil was significantly enriched in bacterial isolates capable of hydrolysing cellobiose and N-acetylglucosamine. In contrast, the ectomycorrhizosphere appeared significantly enriched in bacterial isolates capable of hydrolysing glucopyranoside and chitin. Notably, chitinase and laccase activities were found only in bacterial isolates belonging to the Collimonas and Pseudomonas genera. Overall, the results suggest that the ectomycorrhizal fungi favour specific bacterial communities with contrasting functional characteristics from the surrounding soil.

DOI: 10.1007/s00248-013-0199-y
PubMed: 23455431

Links to Exploration step

pubmed:23455431

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum.</title>
<author>
<name sortKey="Uroz, S" sort="Uroz, S" uniqKey="Uroz S" first="S" last="Uroz">S. Uroz</name>
<affiliation>
<nlm:affiliation>INRA, UMR1136 INRA-Nancy Université Interactions Arbres-Microorganismes, Centre INRA de Nancy, 54280, Champenoux, France. uroz@nancy.inra.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Courty, P E" sort="Courty, P E" uniqKey="Courty P" first="P E" last="Courty">P E Courty</name>
</author>
<author>
<name sortKey="Pierrat, J C" sort="Pierrat, J C" uniqKey="Pierrat J" first="J C" last="Pierrat">J C Pierrat</name>
</author>
<author>
<name sortKey="Peter, M" sort="Peter, M" uniqKey="Peter M" first="M" last="Peter">M. Peter</name>
</author>
<author>
<name sortKey="Buee, M" sort="Buee, M" uniqKey="Buee M" first="M" last="Buée">M. Buée</name>
</author>
<author>
<name sortKey="Turpault, M P" sort="Turpault, M P" uniqKey="Turpault M" first="M P" last="Turpault">M P Turpault</name>
</author>
<author>
<name sortKey="Garbaye, J" sort="Garbaye, J" uniqKey="Garbaye J" first="J" last="Garbaye">J. Garbaye</name>
</author>
<author>
<name sortKey="Frey Klett, P" sort="Frey Klett, P" uniqKey="Frey Klett P" first="P" last="Frey-Klett">P. Frey-Klett</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23455431</idno>
<idno type="pmid">23455431</idno>
<idno type="doi">10.1007/s00248-013-0199-y</idno>
<idno type="wicri:Area/Main/Corpus">001D00</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D00</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum.</title>
<author>
<name sortKey="Uroz, S" sort="Uroz, S" uniqKey="Uroz S" first="S" last="Uroz">S. Uroz</name>
<affiliation>
<nlm:affiliation>INRA, UMR1136 INRA-Nancy Université Interactions Arbres-Microorganismes, Centre INRA de Nancy, 54280, Champenoux, France. uroz@nancy.inra.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Courty, P E" sort="Courty, P E" uniqKey="Courty P" first="P E" last="Courty">P E Courty</name>
</author>
<author>
<name sortKey="Pierrat, J C" sort="Pierrat, J C" uniqKey="Pierrat J" first="J C" last="Pierrat">J C Pierrat</name>
</author>
<author>
<name sortKey="Peter, M" sort="Peter, M" uniqKey="Peter M" first="M" last="Peter">M. Peter</name>
</author>
<author>
<name sortKey="Buee, M" sort="Buee, M" uniqKey="Buee M" first="M" last="Buée">M. Buée</name>
</author>
<author>
<name sortKey="Turpault, M P" sort="Turpault, M P" uniqKey="Turpault M" first="M P" last="Turpault">M P Turpault</name>
</author>
<author>
<name sortKey="Garbaye, J" sort="Garbaye, J" uniqKey="Garbaye J" first="J" last="Garbaye">J. Garbaye</name>
</author>
<author>
<name sortKey="Frey Klett, P" sort="Frey Klett, P" uniqKey="Frey Klett P" first="P" last="Frey-Klett">P. Frey-Klett</name>
</author>
</analytic>
<series>
<title level="j">Microbial ecology</title>
<idno type="eISSN">1432-184X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (classification)</term>
<term>Bacteria (genetics)</term>
<term>Bacteria (isolation & purification)</term>
<term>Biodiversity (MeSH)</term>
<term>Fungi (classification)</term>
<term>Fungi (genetics)</term>
<term>Fungi (isolation & purification)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Phylogeny (MeSH)</term>
<term>Rhizosphere (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Bacteria</term>
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Rhizosphere</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An ectomycorrhiza is a multitrophic association between a tree root, an ectomycorrhizal fungus, free-living fungi and the associated bacterial communities. Enzymatic activities of ectomycorrhizal root tips are therefore result of the contribution from different partners of the symbiotic organ. However, the functional potential of the fungus-associated bacterial communities remains unknown. In this study, a collection of 80 bacterial strains randomly selected and isolated from a soil-ectomycorrhiza continuum (oak-Scleroderma citrinum ectomycorrhizas, the ectomycorrhizosphere and the surrounding bulk soil) were characterized. All the bacterial isolates were identified by partial 16S rRNA gene sequences as members of the genera Burkholderia, Collimonas, Dyella, Mesorhizobium, Pseudomonas, Rhizobium and Sphingomonas. The bacterial strains were then assayed for β-xylosidase, β-glucosidase, N-acetyl-hexosaminidase, β-glucuronidase, cellobiohydrolase, phosphomonoesterase, leucine-aminopeptidase and laccase activities, chitin solubilization and auxin production. Using these bioassays, we demonstrated significant differences in the functional distribution of the bacterial communities living in the different compartments of the soil-ectomycorrhiza continuum. The surrounding bulk soil was significantly enriched in bacterial isolates capable of hydrolysing cellobiose and N-acetylglucosamine. In contrast, the ectomycorrhizosphere appeared significantly enriched in bacterial isolates capable of hydrolysing glucopyranoside and chitin. Notably, chitinase and laccase activities were found only in bacterial isolates belonging to the Collimonas and Pseudomonas genera. Overall, the results suggest that the ectomycorrhizal fungi favour specific bacterial communities with contrasting functional characteristics from the surrounding soil.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23455431</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-184X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>66</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Microbial ecology</Title>
<ISOAbbreviation>Microb Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum.</ArticleTitle>
<Pagination>
<MedlinePgn>404-15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00248-013-0199-y</ELocationID>
<Abstract>
<AbstractText>An ectomycorrhiza is a multitrophic association between a tree root, an ectomycorrhizal fungus, free-living fungi and the associated bacterial communities. Enzymatic activities of ectomycorrhizal root tips are therefore result of the contribution from different partners of the symbiotic organ. However, the functional potential of the fungus-associated bacterial communities remains unknown. In this study, a collection of 80 bacterial strains randomly selected and isolated from a soil-ectomycorrhiza continuum (oak-Scleroderma citrinum ectomycorrhizas, the ectomycorrhizosphere and the surrounding bulk soil) were characterized. All the bacterial isolates were identified by partial 16S rRNA gene sequences as members of the genera Burkholderia, Collimonas, Dyella, Mesorhizobium, Pseudomonas, Rhizobium and Sphingomonas. The bacterial strains were then assayed for β-xylosidase, β-glucosidase, N-acetyl-hexosaminidase, β-glucuronidase, cellobiohydrolase, phosphomonoesterase, leucine-aminopeptidase and laccase activities, chitin solubilization and auxin production. Using these bioassays, we demonstrated significant differences in the functional distribution of the bacterial communities living in the different compartments of the soil-ectomycorrhiza continuum. The surrounding bulk soil was significantly enriched in bacterial isolates capable of hydrolysing cellobiose and N-acetylglucosamine. In contrast, the ectomycorrhizosphere appeared significantly enriched in bacterial isolates capable of hydrolysing glucopyranoside and chitin. Notably, chitinase and laccase activities were found only in bacterial isolates belonging to the Collimonas and Pseudomonas genera. Overall, the results suggest that the ectomycorrhizal fungi favour specific bacterial communities with contrasting functional characteristics from the surrounding soil.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Uroz</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR1136 INRA-Nancy Université Interactions Arbres-Microorganismes, Centre INRA de Nancy, 54280, Champenoux, France. uroz@nancy.inra.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Courty</LastName>
<ForeName>P E</ForeName>
<Initials>PE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pierrat</LastName>
<ForeName>J C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peter</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Buée</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Turpault</LastName>
<ForeName>M P</ForeName>
<Initials>MP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Garbaye</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frey-Klett</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Ecol</MedlineTA>
<NlmUniqueID>7500663</NlmUniqueID>
<ISSNLinking>0095-3628</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="Y">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23455431</ArticleId>
<ArticleId IdType="doi">10.1007/s00248-013-0199-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Res Microbiol. 2011 Nov;162(9):820-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21315149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e25724</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Sep;68(9):4407-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12200294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(1):22-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Apr;68(4):1569-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2009 Aug;17(8):378-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19660952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 May;76(2):245-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21265870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 1999 Oct;17(4-5):319-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14538133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(2):230-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18312537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1990;44:219-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2252383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2006 Mar;30(2):215-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16472305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Apr;78(8):3020-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2007 Oct;54(3):567-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17546519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2004 May;54(Pt 3):857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15143036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Jun;80(3):735-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22379979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1975 Mar;29(3):422-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">234719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Jun;173(12 ):3814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1646789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(1):249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20881013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jul;76(14):4780-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20511429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2009 Nov;58(4):827-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19466479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2011 Jun;22(3):394-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(3):736-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 May;73(9):3019-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Feb;12(2):281-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19638176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12209002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D00 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001D00 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23455431
   |texte=   Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23455431" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020