Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot.

Identifieur interne : 001C68 ( Main/Corpus ); précédent : 001C67; suivant : 001C69

Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot.

Auteurs : Siti Nurfadilah ; Nigel D. Swarts ; Kingsley W. Dixon ; Hans Lambers ; David J. Merritt

Source :

RBID : pubmed:23532043

English descriptors

Abstract

BACKGROUND AND AIMS

Many terrestrial orchids have an obligate requirement for mycorrhizal associations to provide nutritional support from germination to establishment. This study will investigate the ability of orchid mycorrhizal fungi (OMF) to utilize a variety of nutrient sources in the nutrient-impoverished (low organic) soils of the Southwest Australian Floristic Region (SWAFR) in order to effectively compete, survive and sustain the orchid host.

METHODS

Mycorrhizal fungi representing key OMF genera were isolated from three common and widespread species: Pterostylis recurva, Caladenia flava and Diuris corymbosa, and one rare and restricted species: Drakaea elastica. The accessibility of specific nutrients was assessed by comparing growth including dry biomass of OMF in vitro on basal CN MMN liquid media.

KEY RESULTS

Each of the OMF accessed and effectively utilized a wide variety of nutrient compounds, including carbon (C) sources, inorganic and organic nitrogen (N) and inorganic and organic phosphorus (P). The nutrient compounds utilized varied between the genera of OMF, most notably sources of N.

CONCLUSIONS

These results suggest that OMF can differentiate between niches (micro-niche specialization) in a constrained, highly resource-limited environment such as the SWAFR. Phosphorus is the most limited macronutrient in SWAFR soils and the ability to access phytate by OMF indicates a characterizing functional capacity of OMF from the SWAFR. Furthermore, compared with OMF isolated from the rare D. elastica, OMF associating with the common P. recurva produced far greater biomass over a wider variety of nutritional sources. This suggests a broader tolerance for habitat variation providing more opportunities for the common orchid for recruitment and establishment at a site.


DOI: 10.1093/aob/mct064
PubMed: 23532043
PubMed Central: PMC3662510

Links to Exploration step

pubmed:23532043

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot.</title>
<author>
<name sortKey="Nurfadilah, Siti" sort="Nurfadilah, Siti" uniqKey="Nurfadilah S" first="Siti" last="Nurfadilah">Siti Nurfadilah</name>
<affiliation>
<nlm:affiliation>School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Swarts, Nigel D" sort="Swarts, Nigel D" uniqKey="Swarts N" first="Nigel D" last="Swarts">Nigel D. Swarts</name>
</author>
<author>
<name sortKey="Dixon, Kingsley W" sort="Dixon, Kingsley W" uniqKey="Dixon K" first="Kingsley W" last="Dixon">Kingsley W. Dixon</name>
</author>
<author>
<name sortKey="Lambers, Hans" sort="Lambers, Hans" uniqKey="Lambers H" first="Hans" last="Lambers">Hans Lambers</name>
</author>
<author>
<name sortKey="Merritt, David J" sort="Merritt, David J" uniqKey="Merritt D" first="David J" last="Merritt">David J. Merritt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23532043</idno>
<idno type="pmid">23532043</idno>
<idno type="doi">10.1093/aob/mct064</idno>
<idno type="pmc">PMC3662510</idno>
<idno type="wicri:Area/Main/Corpus">001C68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot.</title>
<author>
<name sortKey="Nurfadilah, Siti" sort="Nurfadilah, Siti" uniqKey="Nurfadilah S" first="Siti" last="Nurfadilah">Siti Nurfadilah</name>
<affiliation>
<nlm:affiliation>School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Swarts, Nigel D" sort="Swarts, Nigel D" uniqKey="Swarts N" first="Nigel D" last="Swarts">Nigel D. Swarts</name>
</author>
<author>
<name sortKey="Dixon, Kingsley W" sort="Dixon, Kingsley W" uniqKey="Dixon K" first="Kingsley W" last="Dixon">Kingsley W. Dixon</name>
</author>
<author>
<name sortKey="Lambers, Hans" sort="Lambers, Hans" uniqKey="Lambers H" first="Hans" last="Lambers">Hans Lambers</name>
</author>
<author>
<name sortKey="Merritt, David J" sort="Merritt, David J" uniqKey="Merritt D" first="David J" last="Merritt">David J. Merritt</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodiversity (MeSH)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Nitrogen Compounds (metabolism)</term>
<term>Orchidaceae (microbiology)</term>
<term>Phosphorus Compounds (metabolism)</term>
<term>Species Specificity (MeSH)</term>
<term>Western Australia (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen Compounds</term>
<term>Phosphorus Compounds</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Western Australia</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Orchidaceae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Carbohydrate Metabolism</term>
<term>Species Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>Many terrestrial orchids have an obligate requirement for mycorrhizal associations to provide nutritional support from germination to establishment. This study will investigate the ability of orchid mycorrhizal fungi (OMF) to utilize a variety of nutrient sources in the nutrient-impoverished (low organic) soils of the Southwest Australian Floristic Region (SWAFR) in order to effectively compete, survive and sustain the orchid host.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Mycorrhizal fungi representing key OMF genera were isolated from three common and widespread species: Pterostylis recurva, Caladenia flava and Diuris corymbosa, and one rare and restricted species: Drakaea elastica. The accessibility of specific nutrients was assessed by comparing growth including dry biomass of OMF in vitro on basal CN MMN liquid media.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>Each of the OMF accessed and effectively utilized a wide variety of nutrient compounds, including carbon (C) sources, inorganic and organic nitrogen (N) and inorganic and organic phosphorus (P). The nutrient compounds utilized varied between the genera of OMF, most notably sources of N.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>These results suggest that OMF can differentiate between niches (micro-niche specialization) in a constrained, highly resource-limited environment such as the SWAFR. Phosphorus is the most limited macronutrient in SWAFR soils and the ability to access phytate by OMF indicates a characterizing functional capacity of OMF from the SWAFR. Furthermore, compared with OMF isolated from the rare D. elastica, OMF associating with the common P. recurva produced far greater biomass over a wider variety of nutritional sources. This suggests a broader tolerance for habitat variation providing more opportunities for the common orchid for recruitment and establishment at a site.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23532043</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>111</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot.</ArticleTitle>
<Pagination>
<MedlinePgn>1233-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mct064</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Many terrestrial orchids have an obligate requirement for mycorrhizal associations to provide nutritional support from germination to establishment. This study will investigate the ability of orchid mycorrhizal fungi (OMF) to utilize a variety of nutrient sources in the nutrient-impoverished (low organic) soils of the Southwest Australian Floristic Region (SWAFR) in order to effectively compete, survive and sustain the orchid host.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Mycorrhizal fungi representing key OMF genera were isolated from three common and widespread species: Pterostylis recurva, Caladenia flava and Diuris corymbosa, and one rare and restricted species: Drakaea elastica. The accessibility of specific nutrients was assessed by comparing growth including dry biomass of OMF in vitro on basal CN MMN liquid media.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">Each of the OMF accessed and effectively utilized a wide variety of nutrient compounds, including carbon (C) sources, inorganic and organic nitrogen (N) and inorganic and organic phosphorus (P). The nutrient compounds utilized varied between the genera of OMF, most notably sources of N.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">These results suggest that OMF can differentiate between niches (micro-niche specialization) in a constrained, highly resource-limited environment such as the SWAFR. Phosphorus is the most limited macronutrient in SWAFR soils and the ability to access phytate by OMF indicates a characterizing functional capacity of OMF from the SWAFR. Furthermore, compared with OMF isolated from the rare D. elastica, OMF associating with the common P. recurva produced far greater biomass over a wider variety of nutritional sources. This suggests a broader tolerance for habitat variation providing more opportunities for the common orchid for recruitment and establishment at a site.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nurfadilah</LastName>
<ForeName>Siti</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Swarts</LastName>
<ForeName>Nigel D</ForeName>
<Initials>ND</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dixon</LastName>
<ForeName>Kingsley W</ForeName>
<Initials>KW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lambers</LastName>
<ForeName>Hans</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Merritt</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017672">Nitrogen Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017553">Phosphorus Compounds</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="Y">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017672" MajorTopicYN="N">Nitrogen Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029595" MajorTopicYN="N">Orchidaceae</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017553" MajorTopicYN="N">Phosphorus Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014904" MajorTopicYN="N" Type="Geographic">Western Australia</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Carbon</Keyword>
<Keyword MajorTopicYN="N">Ceratobasidium</Keyword>
<Keyword MajorTopicYN="N">Sebacina</Keyword>
<Keyword MajorTopicYN="N">Tulasnella</Keyword>
<Keyword MajorTopicYN="N">nitrogen</Keyword>
<Keyword MajorTopicYN="N">nutrients</Keyword>
<Keyword MajorTopicYN="N">orchid mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">phosphorus</Keyword>
<Keyword MajorTopicYN="N">soil</Keyword>
<Keyword MajorTopicYN="N">terrestrial orchid</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23532043</ArticleId>
<ArticleId IdType="pii">mct064</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mct064</ArticleId>
<ArticleId IdType="pmc">PMC3662510</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2000 Feb 24;403(6772):853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10706275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2004 Sep;108(Pt 9):1003-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15506013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2005 Nov;69(2):200-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15812641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 May;166(2):639-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15819926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2005 Apr;109(Pt 4):452-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15912933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 May;16(3):175-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16374622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2006;46(1):68-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16463321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 Mar;151(2):206-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17089139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 Jan;111(Pt 1):51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Sep;17(6):475-486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17582535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Feb;23(2):95-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Aug;104(3):543-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Aug;20(6):375-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20054590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Aug;19(15):3226-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20618899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Aug;97(8):1313-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21616884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 1996 Mar;132(3):435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26763639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1996;50:183-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8905079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1998 Apr;22(1):21-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9640645</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001C68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23532043
   |texte=   Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23532043" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020