Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence.

Identifieur interne : 001C34 ( Main/Corpus ); précédent : 001C33; suivant : 001C35

Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence.

Auteurs : Ghislaine Recorbet ; Cosette Abdallah ; Jenny Renaut ; Daniel Wipf ; Eliane Dumas-Gaudot

Source :

RBID : pubmed:23638913

English descriptors

Abstract

The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a bottleneck exists for their functional analysis as these experiments are difficult to carry out with mycorrhiza. Nonetheless, the expansion of gene-to-phenotype reverse genetic tools, including RNA interference and transposon silencing, have recently succeeded in elucidating some of the plant-related protein candidates. Likewise, despite the ongoing absence of transformation tools for AM fungi, host-induced gene silencing has allowed knockdown of fungal gene expression in planta for the first time, thus unlocking a technological limitation in deciphering the functional pertinence of glomeromycotan proteins during mycorrhizal establishment. This review is thus intended to draw a picture of our current knowledge about the plant and fungal protein actors that have been demonstrated to be functionally implicated in sustaining AM symbiosis mostly on the basis of silencing approaches.

DOI: 10.1111/nph.12287
PubMed: 23638913

Links to Exploration step

pubmed:23638913

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence.</title>
<author>
<name sortKey="Recorbet, Ghislaine" sort="Recorbet, Ghislaine" uniqKey="Recorbet G" first="Ghislaine" last="Recorbet">Ghislaine Recorbet</name>
<affiliation>
<nlm:affiliation>UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, Dijon Cedex, France. recorbet@dijon.inra.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abdallah, Cosette" sort="Abdallah, Cosette" uniqKey="Abdallah C" first="Cosette" last="Abdallah">Cosette Abdallah</name>
</author>
<author>
<name sortKey="Renaut, Jenny" sort="Renaut, Jenny" uniqKey="Renaut J" first="Jenny" last="Renaut">Jenny Renaut</name>
</author>
<author>
<name sortKey="Wipf, Daniel" sort="Wipf, Daniel" uniqKey="Wipf D" first="Daniel" last="Wipf">Daniel Wipf</name>
</author>
<author>
<name sortKey="Dumas Gaudot, Eliane" sort="Dumas Gaudot, Eliane" uniqKey="Dumas Gaudot E" first="Eliane" last="Dumas-Gaudot">Eliane Dumas-Gaudot</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23638913</idno>
<idno type="pmid">23638913</idno>
<idno type="doi">10.1111/nph.12287</idno>
<idno type="wicri:Area/Main/Corpus">001C34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence.</title>
<author>
<name sortKey="Recorbet, Ghislaine" sort="Recorbet, Ghislaine" uniqKey="Recorbet G" first="Ghislaine" last="Recorbet">Ghislaine Recorbet</name>
<affiliation>
<nlm:affiliation>UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, Dijon Cedex, France. recorbet@dijon.inra.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abdallah, Cosette" sort="Abdallah, Cosette" uniqKey="Abdallah C" first="Cosette" last="Abdallah">Cosette Abdallah</name>
</author>
<author>
<name sortKey="Renaut, Jenny" sort="Renaut, Jenny" uniqKey="Renaut J" first="Jenny" last="Renaut">Jenny Renaut</name>
</author>
<author>
<name sortKey="Wipf, Daniel" sort="Wipf, Daniel" uniqKey="Wipf D" first="Daniel" last="Wipf">Daniel Wipf</name>
</author>
<author>
<name sortKey="Dumas Gaudot, Eliane" sort="Dumas Gaudot, Eliane" uniqKey="Dumas Gaudot E" first="Eliane" last="Dumas-Gaudot">Eliane Dumas-Gaudot</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Glomeromycota (physiology)</term>
<term>Hyphae (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phosphates (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plastids (metabolism)</term>
<term>Protein Transport (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Fungal Proteins</term>
<term>Phosphates</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plastids</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Hyphae</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Transport</term>
<term>Signal Transduction</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a bottleneck exists for their functional analysis as these experiments are difficult to carry out with mycorrhiza. Nonetheless, the expansion of gene-to-phenotype reverse genetic tools, including RNA interference and transposon silencing, have recently succeeded in elucidating some of the plant-related protein candidates. Likewise, despite the ongoing absence of transformation tools for AM fungi, host-induced gene silencing has allowed knockdown of fungal gene expression in planta for the first time, thus unlocking a technological limitation in deciphering the functional pertinence of glomeromycotan proteins during mycorrhizal establishment. This review is thus intended to draw a picture of our current knowledge about the plant and fungal protein actors that have been demonstrated to be functionally implicated in sustaining AM symbiosis mostly on the basis of silencing approaches.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23638913</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>199</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence.</ArticleTitle>
<Pagination>
<MedlinePgn>26-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.12287</ELocationID>
<Abstract>
<AbstractText>The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a bottleneck exists for their functional analysis as these experiments are difficult to carry out with mycorrhiza. Nonetheless, the expansion of gene-to-phenotype reverse genetic tools, including RNA interference and transposon silencing, have recently succeeded in elucidating some of the plant-related protein candidates. Likewise, despite the ongoing absence of transformation tools for AM fungi, host-induced gene silencing has allowed knockdown of fungal gene expression in planta for the first time, thus unlocking a technological limitation in deciphering the functional pertinence of glomeromycotan proteins during mycorrhizal establishment. This review is thus intended to draw a picture of our current knowledge about the plant and fungal protein actors that have been demonstrated to be functionally implicated in sustaining AM symbiosis mostly on the basis of silencing approaches.</AbstractText>
<CopyrightInformation>© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Recorbet</LastName>
<ForeName>Ghislaine</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, Dijon Cedex, France. recorbet@dijon.inra.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abdallah</LastName>
<ForeName>Cosette</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Renaut</LastName>
<ForeName>Jenny</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wipf</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dumas-Gaudot</LastName>
<ForeName>Eliane</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018087" MajorTopicYN="N">Plastids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23638913</ArticleId>
<ArticleId IdType="doi">10.1111/nph.12287</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001C34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23638913
   |texte=   Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23638913" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020