Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Truffle brûlés have an impact on the diversity of soil bacterial communities.

Identifieur interne : 001C24 ( Main/Corpus ); précédent : 001C23; suivant : 001C25

Truffle brûlés have an impact on the diversity of soil bacterial communities.

Auteurs : Antonietta Mello ; Guo-Chun Ding ; Yvette M. Piceno ; Chiara Napoli ; Lauren M. Tom ; Todd Z. Desantis ; Gary L. Andersen ; Kornelia Smalla ; Paola Bonfante

Source :

RBID : pubmed:23667413

English descriptors

Abstract

BACKGROUND

The development of Tuber melanosporum mycorrhizal symbiosis is associated with the production of an area devoid of vegetation (commonly referred to by the French word 'brûlé') around the symbiotic plants and where the fruiting bodies of T. melanosporum are usually collected. The extent of the ecological impact of such an area is still being discovered. While the relationship between T. melanosporum and the other fungi present in the brûlé has been assessed, no data are available on the relationship between this fungus and the bacteria inhabiting the brûlé.

METHODOLOGY/PRINCIPAL FINDINGS

We used DGGE and DNA microarrays of 16S rRNA gene fragments to compare the bacterial and archaeal communities inside and outside of truffle brûlés. Soil samples were collected in 2008 from four productive T. melanosporum/Quercus pubescens truffle-grounds located in Cahors, France, showing characteristic truffle brûlé. All the samples were analyzed by DGGE and one truffle-ground was analyzed also using phylogenetic microarrays. DGGE profiles showed differences in the bacterial community composition, and the microarrays revealed a few differences in relative richness between the brûlé interior and exterior zones, as well as differences in the relative abundance of several taxa.

CONCLUSIONS/SIGNIFICANCE

The different signal intensities we have measured for members of bacteria and archaea inside versus outside the brûlé are the first demonstration, to our knowledge, that not only fungal communities, but also other microorganisms are affected by T. melanosporum. Firmicutes (e.g., Bacillus), several genera of Actinobacteria, and a few Cyanobacteria had greater representation inside the brûlé compared with outside, whereas Pseudomonas and several genera within the class Flavobacteriaceae had higher relative abundances outside the brûlé. The findings from this study may contribute to future searches for microbial bio-indicators of brûlés.


DOI: 10.1371/journal.pone.0061945
PubMed: 23667413
PubMed Central: PMC3640031

Links to Exploration step

pubmed:23667413

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Truffle brûlés have an impact on the diversity of soil bacterial communities.</title>
<author>
<name sortKey="Mello, Antonietta" sort="Mello, Antonietta" uniqKey="Mello A" first="Antonietta" last="Mello">Antonietta Mello</name>
<affiliation>
<nlm:affiliation>Plant Protection Institute, Turin UOS, CNR, Italy. a.mello@ipp.cnr.it</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ding, Guo Chun" sort="Ding, Guo Chun" uniqKey="Ding G" first="Guo-Chun" last="Ding">Guo-Chun Ding</name>
</author>
<author>
<name sortKey="Piceno, Yvette M" sort="Piceno, Yvette M" uniqKey="Piceno Y" first="Yvette M" last="Piceno">Yvette M. Piceno</name>
</author>
<author>
<name sortKey="Napoli, Chiara" sort="Napoli, Chiara" uniqKey="Napoli C" first="Chiara" last="Napoli">Chiara Napoli</name>
</author>
<author>
<name sortKey="Tom, Lauren M" sort="Tom, Lauren M" uniqKey="Tom L" first="Lauren M" last="Tom">Lauren M. Tom</name>
</author>
<author>
<name sortKey="Desantis, Todd Z" sort="Desantis, Todd Z" uniqKey="Desantis T" first="Todd Z" last="Desantis">Todd Z. Desantis</name>
</author>
<author>
<name sortKey="Andersen, Gary L" sort="Andersen, Gary L" uniqKey="Andersen G" first="Gary L" last="Andersen">Gary L. Andersen</name>
</author>
<author>
<name sortKey="Smalla, Kornelia" sort="Smalla, Kornelia" uniqKey="Smalla K" first="Kornelia" last="Smalla">Kornelia Smalla</name>
</author>
<author>
<name sortKey="Bonfante, Paola" sort="Bonfante, Paola" uniqKey="Bonfante P" first="Paola" last="Bonfante">Paola Bonfante</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23667413</idno>
<idno type="pmid">23667413</idno>
<idno type="doi">10.1371/journal.pone.0061945</idno>
<idno type="pmc">PMC3640031</idno>
<idno type="wicri:Area/Main/Corpus">001C24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Truffle brûlés have an impact on the diversity of soil bacterial communities.</title>
<author>
<name sortKey="Mello, Antonietta" sort="Mello, Antonietta" uniqKey="Mello A" first="Antonietta" last="Mello">Antonietta Mello</name>
<affiliation>
<nlm:affiliation>Plant Protection Institute, Turin UOS, CNR, Italy. a.mello@ipp.cnr.it</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ding, Guo Chun" sort="Ding, Guo Chun" uniqKey="Ding G" first="Guo-Chun" last="Ding">Guo-Chun Ding</name>
</author>
<author>
<name sortKey="Piceno, Yvette M" sort="Piceno, Yvette M" uniqKey="Piceno Y" first="Yvette M" last="Piceno">Yvette M. Piceno</name>
</author>
<author>
<name sortKey="Napoli, Chiara" sort="Napoli, Chiara" uniqKey="Napoli C" first="Chiara" last="Napoli">Chiara Napoli</name>
</author>
<author>
<name sortKey="Tom, Lauren M" sort="Tom, Lauren M" uniqKey="Tom L" first="Lauren M" last="Tom">Lauren M. Tom</name>
</author>
<author>
<name sortKey="Desantis, Todd Z" sort="Desantis, Todd Z" uniqKey="Desantis T" first="Todd Z" last="Desantis">Todd Z. Desantis</name>
</author>
<author>
<name sortKey="Andersen, Gary L" sort="Andersen, Gary L" uniqKey="Andersen G" first="Gary L" last="Andersen">Gary L. Andersen</name>
</author>
<author>
<name sortKey="Smalla, Kornelia" sort="Smalla, Kornelia" uniqKey="Smalla K" first="Kornelia" last="Smalla">Kornelia Smalla</name>
</author>
<author>
<name sortKey="Bonfante, Paola" sort="Bonfante, Paola" uniqKey="Bonfante P" first="Paola" last="Bonfante">Paola Bonfante</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actinobacteria (classification)</term>
<term>Actinobacteria (genetics)</term>
<term>Bacillus (classification)</term>
<term>Bacillus (genetics)</term>
<term>Biodiversity (MeSH)</term>
<term>DNA, Archaeal (genetics)</term>
<term>DNA, Bacterial (genetics)</term>
<term>DNA, Fungal (genetics)</term>
<term>Denaturing Gradient Gel Electrophoresis (MeSH)</term>
<term>France (MeSH)</term>
<term>Microarray Analysis (MeSH)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Tubers (microbiology)</term>
<term>Proteobacteria (classification)</term>
<term>Proteobacteria (genetics)</term>
<term>Pseudomonas (classification)</term>
<term>Pseudomonas (genetics)</term>
<term>Quercus (microbiology)</term>
<term>RNA, Ribosomal, 16S (classification)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Archaeal</term>
<term>DNA, Bacterial</term>
<term>DNA, Fungal</term>
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>France</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Actinobacteria</term>
<term>Bacillus</term>
<term>Mycorrhizae</term>
<term>Proteobacteria</term>
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Actinobacteria</term>
<term>Bacillus</term>
<term>Mycorrhizae</term>
<term>Proteobacteria</term>
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Tubers</term>
<term>Quercus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Denaturing Gradient Gel Electrophoresis</term>
<term>Microarray Analysis</term>
<term>Phylogeny</term>
<term>Soil Microbiology</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The development of Tuber melanosporum mycorrhizal symbiosis is associated with the production of an area devoid of vegetation (commonly referred to by the French word 'brûlé') around the symbiotic plants and where the fruiting bodies of T. melanosporum are usually collected. The extent of the ecological impact of such an area is still being discovered. While the relationship between T. melanosporum and the other fungi present in the brûlé has been assessed, no data are available on the relationship between this fungus and the bacteria inhabiting the brûlé.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY/PRINCIPAL FINDINGS</b>
</p>
<p>We used DGGE and DNA microarrays of 16S rRNA gene fragments to compare the bacterial and archaeal communities inside and outside of truffle brûlés. Soil samples were collected in 2008 from four productive T. melanosporum/Quercus pubescens truffle-grounds located in Cahors, France, showing characteristic truffle brûlé. All the samples were analyzed by DGGE and one truffle-ground was analyzed also using phylogenetic microarrays. DGGE profiles showed differences in the bacterial community composition, and the microarrays revealed a few differences in relative richness between the brûlé interior and exterior zones, as well as differences in the relative abundance of several taxa.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS/SIGNIFICANCE</b>
</p>
<p>The different signal intensities we have measured for members of bacteria and archaea inside versus outside the brûlé are the first demonstration, to our knowledge, that not only fungal communities, but also other microorganisms are affected by T. melanosporum. Firmicutes (e.g., Bacillus), several genera of Actinobacteria, and a few Cyanobacteria had greater representation inside the brûlé compared with outside, whereas Pseudomonas and several genera within the class Flavobacteriaceae had higher relative abundances outside the brûlé. The findings from this study may contribute to future searches for microbial bio-indicators of brûlés.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23667413</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Truffle brûlés have an impact on the diversity of soil bacterial communities.</ArticleTitle>
<Pagination>
<MedlinePgn>e61945</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0061945</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The development of Tuber melanosporum mycorrhizal symbiosis is associated with the production of an area devoid of vegetation (commonly referred to by the French word 'brûlé') around the symbiotic plants and where the fruiting bodies of T. melanosporum are usually collected. The extent of the ecological impact of such an area is still being discovered. While the relationship between T. melanosporum and the other fungi present in the brûlé has been assessed, no data are available on the relationship between this fungus and the bacteria inhabiting the brûlé.</AbstractText>
<AbstractText Label="METHODOLOGY/PRINCIPAL FINDINGS" NlmCategory="RESULTS">We used DGGE and DNA microarrays of 16S rRNA gene fragments to compare the bacterial and archaeal communities inside and outside of truffle brûlés. Soil samples were collected in 2008 from four productive T. melanosporum/Quercus pubescens truffle-grounds located in Cahors, France, showing characteristic truffle brûlé. All the samples were analyzed by DGGE and one truffle-ground was analyzed also using phylogenetic microarrays. DGGE profiles showed differences in the bacterial community composition, and the microarrays revealed a few differences in relative richness between the brûlé interior and exterior zones, as well as differences in the relative abundance of several taxa.</AbstractText>
<AbstractText Label="CONCLUSIONS/SIGNIFICANCE" NlmCategory="CONCLUSIONS">The different signal intensities we have measured for members of bacteria and archaea inside versus outside the brûlé are the first demonstration, to our knowledge, that not only fungal communities, but also other microorganisms are affected by T. melanosporum. Firmicutes (e.g., Bacillus), several genera of Actinobacteria, and a few Cyanobacteria had greater representation inside the brûlé compared with outside, whereas Pseudomonas and several genera within the class Flavobacteriaceae had higher relative abundances outside the brûlé. The findings from this study may contribute to future searches for microbial bio-indicators of brûlés.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mello</LastName>
<ForeName>Antonietta</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Plant Protection Institute, Turin UOS, CNR, Italy. a.mello@ipp.cnr.it</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Guo-Chun</ForeName>
<Initials>GC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Piceno</LastName>
<ForeName>Yvette M</ForeName>
<Initials>YM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Napoli</LastName>
<ForeName>Chiara</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tom</LastName>
<ForeName>Lauren M</ForeName>
<Initials>LM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>DeSantis</LastName>
<ForeName>Todd Z</ForeName>
<Initials>TZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Andersen</LastName>
<ForeName>Gary L</ForeName>
<Initials>GL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smalla</LastName>
<ForeName>Kornelia</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bonfante</LastName>
<ForeName>Paola</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019641">DNA, Archaeal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D039903" MajorTopicYN="N">Actinobacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001407" MajorTopicYN="N">Bacillus</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019641" MajorTopicYN="N">DNA, Archaeal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058645" MajorTopicYN="N">Denaturing Gradient Gel Electrophoresis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005602" MajorTopicYN="N" Type="Geographic">France</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046228" MajorTopicYN="N">Microarray Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035281" MajorTopicYN="N">Plant Tubers</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020560" MajorTopicYN="N">Proteobacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011549" MajorTopicYN="N">Pseudomonas</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23667413</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0061945</ArticleId>
<ArticleId IdType="pii">PONE-D-12-38197</ArticleId>
<ArticleId IdType="pmc">PMC3640031</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Nov;66(11):5035-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11055961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Mar;75(3):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21204872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2002 Jun 4;211(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12076812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2011 Nov-Dec;103(6):1184-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Jan;6(1):94-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21716311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biom J. 2012 Jan;54(1):94-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22170287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Feb;6(2):363-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21796220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Mar;6(3):610-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22134646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Apr;80(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22225520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2012 Jul;167(6):1744-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22447220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2003 Mar;45(3):302-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12632212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2004 May;57(2):187-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15063059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Jan;173(2):697-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1987160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Feb 15;251(4995):767-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1990438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Oct;178(19):5636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8824607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Aug;63(8):3233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9251210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 1998 Jan;73(1):127-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9602286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2005 Feb;60(2):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 Jun 1;247(1):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15927744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Oct;168(1):4-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16159316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2005 Nov;184(3):187-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16187098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2005 Sep 1;54(1):21-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16329969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):417-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2007 Sep;9(9):2234-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17686021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(1):22-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 Dec;111(Pt 12):1450-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18023164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2009 Jun;55(3):233-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19337734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2009;63:363-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19514845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010;61(2):315-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(1):237-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 15;464(7291):1033-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Oct 8;330(6001):204-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20736401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2010 Nov-Dec;114(11-12):936-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21036337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 May;68(5):2535-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11976131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):688-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21287717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2011 Sep;86(3):397-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21723887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 May 27;332(6033):1097-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551032</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001C24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23667413
   |texte=   Truffle brûlés have an impact on the diversity of soil bacterial communities.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23667413" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020