Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells.

Identifieur interne : 001C19 ( Main/Corpus ); précédent : 001C18; suivant : 001C20

Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells.

Auteurs : Andrea Berruti ; Roberto Borriello ; Erica Lumini ; Valentina Scariot ; Valeria Bianciotto ; Raffaella Balestrini

Source :

RBID : pubmed:23675380

Abstract

Obligate symbiotic fungi that form arbuscular mycorrhizae (AMF; belonging to the Glomeromycota phylum) are some of the most important soil microorganisms. AMFs facilitate mineral nutrient uptake from the soil, in exchange for plant-assimilated carbon, and promote water-stress tolerance and resistance to certain diseases. AMFs colonize the root by producing inter- and intra-cellular hyphae. When the fungus penetrates the inner cortical cells, it produces a complex ramified structure called arbuscule, which is considered the preferential site for nutrient exchange. Direct DNA extraction from the whole root and sequencing of ribosomal gene regions are commonly carried out to investigate intraradical AMF communities. Nevertheless, this protocol cannot discriminate between the AMFs that actively produce arbuscules and those that do not. To solve this issue, the authors have characterized the AMF community of arbusculated cells (AC) through a laser microdissection (LMD) approach, combined with sequencing-based taxa identification. The results were then compared with the AMF community that was found from whole root DNA extraction. The AMF communities originating from the LMD samples and the whole root samples differed remarkably. Five taxa were involved in the production of arbuscules, while two taxa were retrieved inside the root but not in the AC. Unexpectedly, one taxon was found in the AC, but its detection was not possible when extracting from the whole root. Thus, the LMD technique can be considered a powerful tool to obtain more precise knowledge on the symbiotically active intraradical AMF community.

DOI: 10.3389/fpls.2013.00135
PubMed: 23675380
PubMed Central: PMC3648770

Links to Exploration step

pubmed:23675380

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells.</title>
<author>
<name sortKey="Berruti, Andrea" sort="Berruti, Andrea" uniqKey="Berruti A" first="Andrea" last="Berruti">Andrea Berruti</name>
<affiliation>
<nlm:affiliation>National Research Council, Plant Protection Institute - Turin UOS Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Borriello, Roberto" sort="Borriello, Roberto" uniqKey="Borriello R" first="Roberto" last="Borriello">Roberto Borriello</name>
</author>
<author>
<name sortKey="Lumini, Erica" sort="Lumini, Erica" uniqKey="Lumini E" first="Erica" last="Lumini">Erica Lumini</name>
</author>
<author>
<name sortKey="Scariot, Valentina" sort="Scariot, Valentina" uniqKey="Scariot V" first="Valentina" last="Scariot">Valentina Scariot</name>
</author>
<author>
<name sortKey="Bianciotto, Valeria" sort="Bianciotto, Valeria" uniqKey="Bianciotto V" first="Valeria" last="Bianciotto">Valeria Bianciotto</name>
</author>
<author>
<name sortKey="Balestrini, Raffaella" sort="Balestrini, Raffaella" uniqKey="Balestrini R" first="Raffaella" last="Balestrini">Raffaella Balestrini</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23675380</idno>
<idno type="pmid">23675380</idno>
<idno type="doi">10.3389/fpls.2013.00135</idno>
<idno type="pmc">PMC3648770</idno>
<idno type="wicri:Area/Main/Corpus">001C19</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells.</title>
<author>
<name sortKey="Berruti, Andrea" sort="Berruti, Andrea" uniqKey="Berruti A" first="Andrea" last="Berruti">Andrea Berruti</name>
<affiliation>
<nlm:affiliation>National Research Council, Plant Protection Institute - Turin UOS Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Borriello, Roberto" sort="Borriello, Roberto" uniqKey="Borriello R" first="Roberto" last="Borriello">Roberto Borriello</name>
</author>
<author>
<name sortKey="Lumini, Erica" sort="Lumini, Erica" uniqKey="Lumini E" first="Erica" last="Lumini">Erica Lumini</name>
</author>
<author>
<name sortKey="Scariot, Valentina" sort="Scariot, Valentina" uniqKey="Scariot V" first="Valentina" last="Scariot">Valentina Scariot</name>
</author>
<author>
<name sortKey="Bianciotto, Valeria" sort="Bianciotto, Valeria" uniqKey="Bianciotto V" first="Valeria" last="Bianciotto">Valeria Bianciotto</name>
</author>
<author>
<name sortKey="Balestrini, Raffaella" sort="Balestrini, Raffaella" uniqKey="Balestrini R" first="Raffaella" last="Balestrini">Raffaella Balestrini</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Obligate symbiotic fungi that form arbuscular mycorrhizae (AMF; belonging to the Glomeromycota phylum) are some of the most important soil microorganisms. AMFs facilitate mineral nutrient uptake from the soil, in exchange for plant-assimilated carbon, and promote water-stress tolerance and resistance to certain diseases. AMFs colonize the root by producing inter- and intra-cellular hyphae. When the fungus penetrates the inner cortical cells, it produces a complex ramified structure called arbuscule, which is considered the preferential site for nutrient exchange. Direct DNA extraction from the whole root and sequencing of ribosomal gene regions are commonly carried out to investigate intraradical AMF communities. Nevertheless, this protocol cannot discriminate between the AMFs that actively produce arbuscules and those that do not. To solve this issue, the authors have characterized the AMF community of arbusculated cells (AC) through a laser microdissection (LMD) approach, combined with sequencing-based taxa identification. The results were then compared with the AMF community that was found from whole root DNA extraction. The AMF communities originating from the LMD samples and the whole root samples differed remarkably. Five taxa were involved in the production of arbuscules, while two taxa were retrieved inside the root but not in the AC. Unexpectedly, one taxon was found in the AC, but its detection was not possible when extracting from the whole root. Thus, the LMD technique can be considered a powerful tool to obtain more precise knowledge on the symbiotically active intraradical AMF community.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23675380</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells.</ArticleTitle>
<Pagination>
<MedlinePgn>135</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2013.00135</ELocationID>
<Abstract>
<AbstractText>Obligate symbiotic fungi that form arbuscular mycorrhizae (AMF; belonging to the Glomeromycota phylum) are some of the most important soil microorganisms. AMFs facilitate mineral nutrient uptake from the soil, in exchange for plant-assimilated carbon, and promote water-stress tolerance and resistance to certain diseases. AMFs colonize the root by producing inter- and intra-cellular hyphae. When the fungus penetrates the inner cortical cells, it produces a complex ramified structure called arbuscule, which is considered the preferential site for nutrient exchange. Direct DNA extraction from the whole root and sequencing of ribosomal gene regions are commonly carried out to investigate intraradical AMF communities. Nevertheless, this protocol cannot discriminate between the AMFs that actively produce arbuscules and those that do not. To solve this issue, the authors have characterized the AMF community of arbusculated cells (AC) through a laser microdissection (LMD) approach, combined with sequencing-based taxa identification. The results were then compared with the AMF community that was found from whole root DNA extraction. The AMF communities originating from the LMD samples and the whole root samples differed remarkably. Five taxa were involved in the production of arbuscules, while two taxa were retrieved inside the root but not in the AC. Unexpectedly, one taxon was found in the AC, but its detection was not possible when extracting from the whole root. Thus, the LMD technique can be considered a powerful tool to obtain more precise knowledge on the symbiotically active intraradical AMF community.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Berruti</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>National Research Council, Plant Protection Institute - Turin UOS Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Borriello</LastName>
<ForeName>Roberto</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lumini</LastName>
<ForeName>Erica</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Scariot</LastName>
<ForeName>Valentina</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bianciotto</LastName>
<ForeName>Valeria</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Balestrini</LastName>
<ForeName>Raffaella</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AM symbiosis</Keyword>
<Keyword MajorTopicYN="N">AMF community</Keyword>
<Keyword MajorTopicYN="N">Glomeromycota</Keyword>
<Keyword MajorTopicYN="N">arbuscules</Keyword>
<Keyword MajorTopicYN="N">ribosomal gene</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>04</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23675380</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2013.00135</ArticleId>
<ArticleId IdType="pmc">PMC3648770</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Comput Biol. 2000 Feb-Apr;7(1-2):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Parasitol. 2000 Oct;47(2):119-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):442-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Jun;13(3):123-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12687445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Mar;138(4):574-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14714172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jul;15(5):365-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Aug;10(8):397-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16027030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:181-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 Feb;111(Pt 2):137-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1055-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 May;45(5):581-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17964831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2008 Jul;9(4):286-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18372315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2008 Mar;18(2):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18488613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Aug;65(2):323-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18547325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Aug;65(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Feb;19(2):125-131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18958505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jan 22;9:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19161626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):424-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21294738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2011 Jul;21(5):1696-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21830711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Nov;48(11):1044-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21907817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Aug;12(8):2165-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21966911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Feb;69(3):510-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21978245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2023-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22034628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):755-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):970-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 May;194(3):810-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22380845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IMA Fungus. 2011 Dec;2(2):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22679604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e41938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22879900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Oct 09;12:186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23046713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Jul;23(5):411-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2010 Aug;2(4):594-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23766230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2010 Sep;3(5-6):547-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 Jul;39(4):783-791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1980 Dec;16(2):111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7463489</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001C19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23675380
   |texte=   Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23675380" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020