Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In situ high-frequency observations of mycorrhizas.

Identifieur interne : 001B87 ( Main/Corpus ); précédent : 001B86; suivant : 001B88

In situ high-frequency observations of mycorrhizas.

Auteurs : Michael F. Allen ; Kuni Kitajima

Source :

RBID : pubmed:23772913

English descriptors

Abstract

Understanding the temporal variation of soil and root dynamics is a major step towards determining net carbon in ecosystems. We describe the installation and structure of an in situ soil observatory and sensing network consisting of an automated minirhizotron with associated soil and atmospheric sensors. Ectomycorrhizal hyphae were digitized daily during 2011 in a Mediterranean climate, high-elevation coniferous forest. Hyphal length was high, but stable during winter in moist and cold soil. As soil began to warm and dry, simultaneous mortality and production indicating turnover followed precipitation events. Mortality continued through the dry season, although some hyphae persisted through the extremes. With autumn monsoons, rapid hyphal re-growth occurred following each event. Relative hyphal length is dependent upon soil temperature and moisture. Soil respiration is related to the daily change in hyphal production, but not hyphal mortality. Continuous sensor and observation systems can provide more accurate assessments of soil carbon dynamics.

DOI: 10.1111/nph.12363
PubMed: 23772913

Links to Exploration step

pubmed:23772913

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In situ high-frequency observations of mycorrhizas.</title>
<author>
<name sortKey="Allen, Michael F" sort="Allen, Michael F" uniqKey="Allen M" first="Michael F" last="Allen">Michael F. Allen</name>
<affiliation>
<nlm:affiliation>Center for Conservation Biology, University of California, Riverside, CA, 92521-0334, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kitajima, Kuni" sort="Kitajima, Kuni" uniqKey="Kitajima K" first="Kuni" last="Kitajima">Kuni Kitajima</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23772913</idno>
<idno type="pmid">23772913</idno>
<idno type="doi">10.1111/nph.12363</idno>
<idno type="wicri:Area/Main/Corpus">001B87</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B87</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In situ high-frequency observations of mycorrhizas.</title>
<author>
<name sortKey="Allen, Michael F" sort="Allen, Michael F" uniqKey="Allen M" first="Michael F" last="Allen">Michael F. Allen</name>
<affiliation>
<nlm:affiliation>Center for Conservation Biology, University of California, Riverside, CA, 92521-0334, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kitajima, Kuni" sort="Kitajima, Kuni" uniqKey="Kitajima K" first="Kuni" last="Kitajima">Kuni Kitajima</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Carbon Cycle (MeSH)</term>
<term>Climate (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Environmental Monitoring (MeSH)</term>
<term>Fungi (growth & development)</term>
<term>Hyphae (growth & development)</term>
<term>Mediterranean Region (MeSH)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Plant Roots (MeSH)</term>
<term>Rain (MeSH)</term>
<term>Seasons (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Temperature (MeSH)</term>
<term>Tracheophyta (microbiology)</term>
<term>Trees (MeSH)</term>
<term>Water (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Mediterranean Region</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fungi</term>
<term>Hyphae</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Tracheophyta</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Carbon Cycle</term>
<term>Climate</term>
<term>Ecosystem</term>
<term>Environmental Monitoring</term>
<term>Plant Roots</term>
<term>Rain</term>
<term>Seasons</term>
<term>Temperature</term>
<term>Trees</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding the temporal variation of soil and root dynamics is a major step towards determining net carbon in ecosystems. We describe the installation and structure of an in situ soil observatory and sensing network consisting of an automated minirhizotron with associated soil and atmospheric sensors. Ectomycorrhizal hyphae were digitized daily during 2011 in a Mediterranean climate, high-elevation coniferous forest. Hyphal length was high, but stable during winter in moist and cold soil. As soil began to warm and dry, simultaneous mortality and production indicating turnover followed precipitation events. Mortality continued through the dry season, although some hyphae persisted through the extremes. With autumn monsoons, rapid hyphal re-growth occurred following each event. Relative hyphal length is dependent upon soil temperature and moisture. Soil respiration is related to the daily change in hyphal production, but not hyphal mortality. Continuous sensor and observation systems can provide more accurate assessments of soil carbon dynamics. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23772913</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>200</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>In situ high-frequency observations of mycorrhizas.</ArticleTitle>
<Pagination>
<MedlinePgn>222-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.12363</ELocationID>
<Abstract>
<AbstractText>Understanding the temporal variation of soil and root dynamics is a major step towards determining net carbon in ecosystems. We describe the installation and structure of an in situ soil observatory and sensing network consisting of an automated minirhizotron with associated soil and atmospheric sensors. Ectomycorrhizal hyphae were digitized daily during 2011 in a Mediterranean climate, high-elevation coniferous forest. Hyphal length was high, but stable during winter in moist and cold soil. As soil began to warm and dry, simultaneous mortality and production indicating turnover followed precipitation events. Mortality continued through the dry season, although some hyphae persisted through the extremes. With autumn monsoons, rapid hyphal re-growth occurred following each event. Relative hyphal length is dependent upon soil temperature and moisture. Soil respiration is related to the daily change in hyphal production, but not hyphal mortality. Continuous sensor and observation systems can provide more accurate assessments of soil carbon dynamics. </AbstractText>
<CopyrightInformation>© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Allen</LastName>
<ForeName>Michael F</ForeName>
<Initials>MF</Initials>
<AffiliationInfo>
<Affiliation>Center for Conservation Biology, University of California, Riverside, CA, 92521-0334, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kitajima</LastName>
<ForeName>Kuni</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057486" MajorTopicYN="Y">Carbon Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="Y">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019083" MajorTopicYN="N" Type="Geographic">Mediterranean Region</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011891" MajorTopicYN="N">Rain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="Y">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064028" MajorTopicYN="Y">Tracheophyta</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">automated minirhizotron</Keyword>
<Keyword MajorTopicYN="N">carbon scaling</Keyword>
<Keyword MajorTopicYN="N">conifer forest</Keyword>
<Keyword MajorTopicYN="N">ectomycorrhiza</Keyword>
<Keyword MajorTopicYN="N">hyphae</Keyword>
<Keyword MajorTopicYN="N">production</Keyword>
<Keyword MajorTopicYN="N">soil sensor network</Keyword>
<Keyword MajorTopicYN="N">turnover</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23772913</ArticleId>
<ArticleId IdType="doi">10.1111/nph.12363</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B87 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001B87 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23772913
   |texte=   In situ high-frequency observations of mycorrhizas.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23772913" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020