Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway.

Identifieur interne : 001B76 ( Main/Corpus ); précédent : 001B75; suivant : 001B77

Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway.

Auteurs : Yuan Yuan Song ; Mao Ye ; Chuan You Li ; Rui Long Wang ; Xiao Chen Wei ; Shi Ming Luo ; Ren Sen Zeng

Source :

RBID : pubmed:23797931

English descriptors

Abstract

Mycorrhizas play a vital role in soil fertility, plant nutrition, and resistance to environmental stresses. However, mycorrhizal effects on plant resistance to herbivorous insects and the related mechanisms are poorly understood. This study evaluated effects of root colonization of tomato (Solanum lycopersicum Mill.) by arbuscular mycorrhizal fungi (AMF) Glomus mosseae on plant defense responses against a chewing caterpillar Helicoverpa arimigera. Mycorrhizal inoculation negatively affected larval performance. Real time RT-PCR analyses showed that mycorrhizal inoculation itself did not induce transcripts of most genes tested. However, insect feeding on AMF pre-inoculated plants resulted in much stronger defense response induction of four defense-related genes LOXD, AOC, PI-I, and PI-II in the leaves of tomato plants relative to non-inoculated plants. Four tomato genotypes: a wild-type (WT) plant, a jasmonic acid (JA) biosynthesis mutant (spr2), a JA-signaling perception mutant (jai1), and a JA-overexpressing 35S::PS plant were used to determine the role of the JA pathway in AMF-primed defense. Insect feeding on mycorrhizal 35S::PS plants led to higher induction of defense-related genes relative to WT plants. However, insect feeding on mycorrhizal spr2 and jai1 mutant plants did not induce transcripts of these genes. Bioassays showed that mycorrhizal inoculation on spr2 and jai1 mutants did not change plant resistance against H. arimigera. These results indicates that mycorrhizal colonization could prime systemic defense responses in tomato upon herbivore attack, and that the JA pathway is involved in defense priming by AMF.

DOI: 10.1007/s10886-013-0312-1
PubMed: 23797931

Links to Exploration step

pubmed:23797931

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway.</title>
<author>
<name sortKey="Song, Yuan Yuan" sort="Song, Yuan Yuan" uniqKey="Song Y" first="Yuan Yuan" last="Song">Yuan Yuan Song</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Wushan, Guangzhou 510642, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Mao" sort="Ye, Mao" uniqKey="Ye M" first="Mao" last="Ye">Mao Ye</name>
</author>
<author>
<name sortKey="Li, Chuan You" sort="Li, Chuan You" uniqKey="Li C" first="Chuan You" last="Li">Chuan You Li</name>
</author>
<author>
<name sortKey="Wang, Rui Long" sort="Wang, Rui Long" uniqKey="Wang R" first="Rui Long" last="Wang">Rui Long Wang</name>
</author>
<author>
<name sortKey="Wei, Xiao Chen" sort="Wei, Xiao Chen" uniqKey="Wei X" first="Xiao Chen" last="Wei">Xiao Chen Wei</name>
</author>
<author>
<name sortKey="Luo, Shi Ming" sort="Luo, Shi Ming" uniqKey="Luo S" first="Shi Ming" last="Luo">Shi Ming Luo</name>
</author>
<author>
<name sortKey="Zeng, Ren Sen" sort="Zeng, Ren Sen" uniqKey="Zeng R" first="Ren Sen" last="Zeng">Ren Sen Zeng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23797931</idno>
<idno type="pmid">23797931</idno>
<idno type="doi">10.1007/s10886-013-0312-1</idno>
<idno type="wicri:Area/Main/Corpus">001B76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway.</title>
<author>
<name sortKey="Song, Yuan Yuan" sort="Song, Yuan Yuan" uniqKey="Song Y" first="Yuan Yuan" last="Song">Yuan Yuan Song</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Wushan, Guangzhou 510642, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Mao" sort="Ye, Mao" uniqKey="Ye M" first="Mao" last="Ye">Mao Ye</name>
</author>
<author>
<name sortKey="Li, Chuan You" sort="Li, Chuan You" uniqKey="Li C" first="Chuan You" last="Li">Chuan You Li</name>
</author>
<author>
<name sortKey="Wang, Rui Long" sort="Wang, Rui Long" uniqKey="Wang R" first="Rui Long" last="Wang">Rui Long Wang</name>
</author>
<author>
<name sortKey="Wei, Xiao Chen" sort="Wei, Xiao Chen" uniqKey="Wei X" first="Xiao Chen" last="Wei">Xiao Chen Wei</name>
</author>
<author>
<name sortKey="Luo, Shi Ming" sort="Luo, Shi Ming" uniqKey="Luo S" first="Shi Ming" last="Luo">Shi Ming Luo</name>
</author>
<author>
<name sortKey="Zeng, Ren Sen" sort="Zeng, Ren Sen" uniqKey="Zeng R" first="Ren Sen" last="Zeng">Ren Sen Zeng</name>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cyclopentanes (metabolism)</term>
<term>Genes, Plant (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Larva (MeSH)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (metabolism)</term>
<term>Lycopersicon esculentum (microbiology)</term>
<term>Moths (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Oxylipins (metabolism)</term>
<term>Plant Immunity (MeSH)</term>
<term>Plant Leaves (metabolism)</term>
<term>Signal Transduction (physiology)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclopentanes</term>
<term>Oxylipins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Genes, Plant</term>
<term>Herbivory</term>
<term>Larva</term>
<term>Moths</term>
<term>Plant Immunity</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mycorrhizas play a vital role in soil fertility, plant nutrition, and resistance to environmental stresses. However, mycorrhizal effects on plant resistance to herbivorous insects and the related mechanisms are poorly understood. This study evaluated effects of root colonization of tomato (Solanum lycopersicum Mill.) by arbuscular mycorrhizal fungi (AMF) Glomus mosseae on plant defense responses against a chewing caterpillar Helicoverpa arimigera. Mycorrhizal inoculation negatively affected larval performance. Real time RT-PCR analyses showed that mycorrhizal inoculation itself did not induce transcripts of most genes tested. However, insect feeding on AMF pre-inoculated plants resulted in much stronger defense response induction of four defense-related genes LOXD, AOC, PI-I, and PI-II in the leaves of tomato plants relative to non-inoculated plants. Four tomato genotypes: a wild-type (WT) plant, a jasmonic acid (JA) biosynthesis mutant (spr2), a JA-signaling perception mutant (jai1), and a JA-overexpressing 35S::PS plant were used to determine the role of the JA pathway in AMF-primed defense. Insect feeding on mycorrhizal 35S::PS plants led to higher induction of defense-related genes relative to WT plants. However, insect feeding on mycorrhizal spr2 and jai1 mutant plants did not induce transcripts of these genes. Bioassays showed that mycorrhizal inoculation on spr2 and jai1 mutants did not change plant resistance against H. arimigera. These results indicates that mycorrhizal colonization could prime systemic defense responses in tomato upon herbivore attack, and that the JA pathway is involved in defense priming by AMF.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23797931</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>39</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>1036-44</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Mycorrhizas play a vital role in soil fertility, plant nutrition, and resistance to environmental stresses. However, mycorrhizal effects on plant resistance to herbivorous insects and the related mechanisms are poorly understood. This study evaluated effects of root colonization of tomato (Solanum lycopersicum Mill.) by arbuscular mycorrhizal fungi (AMF) Glomus mosseae on plant defense responses against a chewing caterpillar Helicoverpa arimigera. Mycorrhizal inoculation negatively affected larval performance. Real time RT-PCR analyses showed that mycorrhizal inoculation itself did not induce transcripts of most genes tested. However, insect feeding on AMF pre-inoculated plants resulted in much stronger defense response induction of four defense-related genes LOXD, AOC, PI-I, and PI-II in the leaves of tomato plants relative to non-inoculated plants. Four tomato genotypes: a wild-type (WT) plant, a jasmonic acid (JA) biosynthesis mutant (spr2), a JA-signaling perception mutant (jai1), and a JA-overexpressing 35S::PS plant were used to determine the role of the JA pathway in AMF-primed defense. Insect feeding on mycorrhizal 35S::PS plants led to higher induction of defense-related genes relative to WT plants. However, insect feeding on mycorrhizal spr2 and jai1 mutant plants did not induce transcripts of these genes. Bioassays showed that mycorrhizal inoculation on spr2 and jai1 mutants did not change plant resistance against H. arimigera. These results indicates that mycorrhizal colonization could prime systemic defense responses in tomato upon herbivore attack, and that the JA pathway is involved in defense priming by AMF.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Yuan Yuan</ForeName>
<Initials>YY</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Wushan, Guangzhou 510642, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Mao</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Chuan You</ForeName>
<Initials>CY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Rui Long</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Xiao Chen</ForeName>
<Initials>XC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Shi Ming</ForeName>
<Initials>SM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Ren Sen</ForeName>
<Initials>RS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="Y">Moths</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="Y">Plant Immunity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23797931</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-013-0312-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:41-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18031220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17097695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5602-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(1):16-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17144894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Jul;120(1):123-131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Sep;18(9):923-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16167763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2009;54:323-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jul;15(7):1646-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Dec;104(7):1263-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(1):41-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Sci. 2013 Jun;20(3):273-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23955880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(3):554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Aug;90(8):2088-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19739371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Jul;89(7):1791-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Jul;18(5):251-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18392645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Feb;158(2):854-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1781-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Apr;74(1):59-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23279660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2012 Jun;38(6):651-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22623151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Apr 3;324(5923):89-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19342588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(10):3545-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17658291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Oct 13;5(10):e13324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20967206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18585955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Feb;109 (3):368-373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):770-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22142268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Feb;158(2):835-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Oct;19(10):1062-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17022170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Nov;153(3):1411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10545469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Entomol. 2011 Feb;40(1):36-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22182609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):832-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ying Yong Sheng Tai Xue Bao. 2011 Sep;22(9):2316-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22126042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jun;148(2):280-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16463175</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001B76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23797931
   |texte=   Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23797931" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020