Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Changes in arbuscular mycorrhizal fungus community along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest.

Identifieur interne : 001B73 ( Main/Corpus ); précédent : 001B72; suivant : 001B74

Changes in arbuscular mycorrhizal fungus community along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest.

Auteurs : Xin Sun ; Cheng Gao ; Liang-Dong Guo

Source :

RBID : pubmed:23812808

English descriptors

Abstract

Knowledge of the changes in arbuscular mycorrhizal (AM) fungi is fundamental for understanding the success of exotic plant invasions in natural ecosystems. In this study, AM fungal colonization and spore community were examined along an invasive gradient of the exotic plant Eupatorium adenophorum in a secondary forest in southwestern China. With increasing E. adenophorum invasion, the density of arbuscules in the roots of E. adenophorum significantly increased, but the AM root colonization rate and the densities of vesicles and hyphal coils in roots of E. adenophorum were not significantly different. A total of 29 AM fungi belonging to nine genera were identified based on spore morphology. Claroideoglomus etunicatum, Funneliformis geosporus, and Glomus aggregatum were the most common AM fungal species. The E. adenophorum invasion significantly decreased the AM fungal spore density in the soil. Furthermore, with increasing of E. adenophorum invasion the spore densities of C. etunicatum, G. aggregatum, and G. arenarium significantly decreased, whereas F. geosporus significantly increased. Nonmetric multidimensional scaling demonstrated that the AM fungus community composition was significantly different (P=0.003) in the different invasive levels of E. adenophorum, and significantly correlated with plant species richness, soil total P, and soil NO3 (-)-N. The results suggest that the alteration in AM fungus community might be caused by E. adenophorum invasion via changing the local plant community and soil properties in a Chinese secondary forest ecosystem.

DOI: 10.1007/s12275-013-3169-7
PubMed: 23812808

Links to Exploration step

pubmed:23812808

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Changes in arbuscular mycorrhizal fungus community along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest.</title>
<author>
<name sortKey="Sun, Xin" sort="Sun, Xin" uniqKey="Sun X" first="Xin" last="Sun">Xin Sun</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gao, Cheng" sort="Gao, Cheng" uniqKey="Gao C" first="Cheng" last="Gao">Cheng Gao</name>
</author>
<author>
<name sortKey="Guo, Liang Dong" sort="Guo, Liang Dong" uniqKey="Guo L" first="Liang-Dong" last="Guo">Liang-Dong Guo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23812808</idno>
<idno type="pmid">23812808</idno>
<idno type="doi">10.1007/s12275-013-3169-7</idno>
<idno type="wicri:Area/Main/Corpus">001B73</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B73</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Changes in arbuscular mycorrhizal fungus community along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest.</title>
<author>
<name sortKey="Sun, Xin" sort="Sun, Xin" uniqKey="Sun X" first="Xin" last="Sun">Xin Sun</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gao, Cheng" sort="Gao, Cheng" uniqKey="Gao C" first="Cheng" last="Gao">Cheng Gao</name>
</author>
<author>
<name sortKey="Guo, Liang Dong" sort="Guo, Liang Dong" uniqKey="Guo L" first="Liang-Dong" last="Guo">Liang-Dong Guo</name>
</author>
</analytic>
<series>
<title level="j">Journal of microbiology (Seoul, Korea)</title>
<idno type="eISSN">1976-3794</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ageratina (microbiology)</term>
<term>China (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Trees (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>China</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Ageratina</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Knowledge of the changes in arbuscular mycorrhizal (AM) fungi is fundamental for understanding the success of exotic plant invasions in natural ecosystems. In this study, AM fungal colonization and spore community were examined along an invasive gradient of the exotic plant Eupatorium adenophorum in a secondary forest in southwestern China. With increasing E. adenophorum invasion, the density of arbuscules in the roots of E. adenophorum significantly increased, but the AM root colonization rate and the densities of vesicles and hyphal coils in roots of E. adenophorum were not significantly different. A total of 29 AM fungi belonging to nine genera were identified based on spore morphology. Claroideoglomus etunicatum, Funneliformis geosporus, and Glomus aggregatum were the most common AM fungal species. The E. adenophorum invasion significantly decreased the AM fungal spore density in the soil. Furthermore, with increasing of E. adenophorum invasion the spore densities of C. etunicatum, G. aggregatum, and G. arenarium significantly decreased, whereas F. geosporus significantly increased. Nonmetric multidimensional scaling demonstrated that the AM fungus community composition was significantly different (P=0.003) in the different invasive levels of E. adenophorum, and significantly correlated with plant species richness, soil total P, and soil NO3 (-)-N. The results suggest that the alteration in AM fungus community might be caused by E. adenophorum invasion via changing the local plant community and soil properties in a Chinese secondary forest ecosystem. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23812808</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1976-3794</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>51</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of microbiology (Seoul, Korea)</Title>
<ISOAbbreviation>J Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Changes in arbuscular mycorrhizal fungus community along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest.</ArticleTitle>
<Pagination>
<MedlinePgn>295-300</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12275-013-3169-7</ELocationID>
<Abstract>
<AbstractText>Knowledge of the changes in arbuscular mycorrhizal (AM) fungi is fundamental for understanding the success of exotic plant invasions in natural ecosystems. In this study, AM fungal colonization and spore community were examined along an invasive gradient of the exotic plant Eupatorium adenophorum in a secondary forest in southwestern China. With increasing E. adenophorum invasion, the density of arbuscules in the roots of E. adenophorum significantly increased, but the AM root colonization rate and the densities of vesicles and hyphal coils in roots of E. adenophorum were not significantly different. A total of 29 AM fungi belonging to nine genera were identified based on spore morphology. Claroideoglomus etunicatum, Funneliformis geosporus, and Glomus aggregatum were the most common AM fungal species. The E. adenophorum invasion significantly decreased the AM fungal spore density in the soil. Furthermore, with increasing of E. adenophorum invasion the spore densities of C. etunicatum, G. aggregatum, and G. arenarium significantly decreased, whereas F. geosporus significantly increased. Nonmetric multidimensional scaling demonstrated that the AM fungus community composition was significantly different (P=0.003) in the different invasive levels of E. adenophorum, and significantly correlated with plant species richness, soil total P, and soil NO3 (-)-N. The results suggest that the alteration in AM fungus community might be caused by E. adenophorum invasion via changing the local plant community and soil properties in a Chinese secondary forest ecosystem. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Cheng</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Liang-Dong</ForeName>
<Initials>LD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Korea (South)</Country>
<MedlineTA>J Microbiol</MedlineTA>
<NlmUniqueID>9703165</NlmUniqueID>
<ISSNLinking>1225-8873</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D036603" MajorTopicYN="N">Ageratina</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23812808</ArticleId>
<ArticleId IdType="doi">10.1007/s12275-013-3169-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2011 Jan;189(2):536-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20958303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2009 Sep;24(9):497-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19577817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2010 Nov;53(11):1291-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21046320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Feb 19;427(6976):731-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 May 2;417(6884):67-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11986666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Oct;70(1):118-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Aug 24;5(8):e12380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20808770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2010 Apr;48(2):139-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20437143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 May;4(5):e140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Feb;90(2):399-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19323224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1994 Aug;20(8):1885-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24242716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Mar;11(3):296-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Jan;168(1):187-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21769630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Aug;161(1):113-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19452173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Jul;22(5):327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21845465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(3):706-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):1188-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19496954</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001B73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23812808
   |texte=   Changes in arbuscular mycorrhizal fungus community along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23812808" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020