Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity.

Identifieur interne : 001B07 ( Main/Corpus ); précédent : 001B06; suivant : 001B08

Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity.

Auteurs : Florence Kurth ; Katharina Zeitler ; Lasse Feldhahn ; Thomas R. Neu ; Tilmann Weber ; Václav Krištůfek ; Tesfaye Wubet ; Sylvie Herrmann ; François Buscot ; Mika T. Tarkka

Source :

RBID : pubmed:24025151

English descriptors

Abstract

BACKGROUND

Host plant roots, mycorrhizal mycelium and microbes are important and potentially interacting factors shaping the performance of mycorrhization helper bacteria (MHB). We investigated the impact of a soil microbial community on the interaction between the extraradical mycelium of the ectomycorrhizal fungus Piloderma croceum and the MHB Streptomyces sp. AcH 505 in both the presence and the absence of pedunculate oak microcuttings.

RESULTS

Specific primers were designed to target the internal transcribed spacer of the rDNA and an intergenic region between two protein encoding genes of P. croceum and the intergenic region between the gyrA and gyrB genes of AcH 505. These primers were used to perform real-time PCR with DNA extracted from soil samples. With a sensitivity of 10 genome copies and a linear range of 6 orders of magnitude, these real-time PCR assays enabled the quantification of purified DNA from P. croceum and AcH 505, respectively. In soil microcosms, the fungal PCR signal was not affected by AcH 505 in the absence of the host plant. However, the fungal signal became weaker in the presence of the plant. This decrease was only observed in microbial filtrate amended microcosms. In contrast, the PCR signal of AcH 505 increased in the presence of P. croceum. The increase was not significant in sterile microcosms that contained plant roots.

CONCLUSIONS

Real-time quantitative PCR assays provide a method for directly detecting and quantifying MHB and mycorrhizal fungi in plant microcosms. Our study indicates that the presence of microorganisms and plant roots can both affect the nature of MHB-fungus interactions, and that mycorrhizal fungi may enhance MHB growth.


DOI: 10.1186/1471-2180-13-205
PubMed: 24025151
PubMed Central: PMC3848169

Links to Exploration step

pubmed:24025151

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity.</title>
<author>
<name sortKey="Kurth, Florence" sort="Kurth, Florence" uniqKey="Kurth F" first="Florence" last="Kurth">Florence Kurth</name>
<affiliation>
<nlm:affiliation>Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str, 4, 06120 Halle/Saale, Germany. florence.kurth@ufz.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zeitler, Katharina" sort="Zeitler, Katharina" uniqKey="Zeitler K" first="Katharina" last="Zeitler">Katharina Zeitler</name>
</author>
<author>
<name sortKey="Feldhahn, Lasse" sort="Feldhahn, Lasse" uniqKey="Feldhahn L" first="Lasse" last="Feldhahn">Lasse Feldhahn</name>
</author>
<author>
<name sortKey="Neu, Thomas R" sort="Neu, Thomas R" uniqKey="Neu T" first="Thomas R" last="Neu">Thomas R. Neu</name>
</author>
<author>
<name sortKey="Weber, Tilmann" sort="Weber, Tilmann" uniqKey="Weber T" first="Tilmann" last="Weber">Tilmann Weber</name>
</author>
<author>
<name sortKey="Kristufek, Vaclav" sort="Kristufek, Vaclav" uniqKey="Kristufek V" first="Václav" last="Krištůfek">Václav Krištůfek</name>
</author>
<author>
<name sortKey="Wubet, Tesfaye" sort="Wubet, Tesfaye" uniqKey="Wubet T" first="Tesfaye" last="Wubet">Tesfaye Wubet</name>
</author>
<author>
<name sortKey="Herrmann, Sylvie" sort="Herrmann, Sylvie" uniqKey="Herrmann S" first="Sylvie" last="Herrmann">Sylvie Herrmann</name>
</author>
<author>
<name sortKey="Buscot, Francois" sort="Buscot, Francois" uniqKey="Buscot F" first="François" last="Buscot">François Buscot</name>
</author>
<author>
<name sortKey="Tarkka, Mika T" sort="Tarkka, Mika T" uniqKey="Tarkka M" first="Mika T" last="Tarkka">Mika T. Tarkka</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24025151</idno>
<idno type="pmid">24025151</idno>
<idno type="doi">10.1186/1471-2180-13-205</idno>
<idno type="pmc">PMC3848169</idno>
<idno type="wicri:Area/Main/Corpus">001B07</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B07</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity.</title>
<author>
<name sortKey="Kurth, Florence" sort="Kurth, Florence" uniqKey="Kurth F" first="Florence" last="Kurth">Florence Kurth</name>
<affiliation>
<nlm:affiliation>Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str, 4, 06120 Halle/Saale, Germany. florence.kurth@ufz.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zeitler, Katharina" sort="Zeitler, Katharina" uniqKey="Zeitler K" first="Katharina" last="Zeitler">Katharina Zeitler</name>
</author>
<author>
<name sortKey="Feldhahn, Lasse" sort="Feldhahn, Lasse" uniqKey="Feldhahn L" first="Lasse" last="Feldhahn">Lasse Feldhahn</name>
</author>
<author>
<name sortKey="Neu, Thomas R" sort="Neu, Thomas R" uniqKey="Neu T" first="Thomas R" last="Neu">Thomas R. Neu</name>
</author>
<author>
<name sortKey="Weber, Tilmann" sort="Weber, Tilmann" uniqKey="Weber T" first="Tilmann" last="Weber">Tilmann Weber</name>
</author>
<author>
<name sortKey="Kristufek, Vaclav" sort="Kristufek, Vaclav" uniqKey="Kristufek V" first="Václav" last="Krištůfek">Václav Krištůfek</name>
</author>
<author>
<name sortKey="Wubet, Tesfaye" sort="Wubet, Tesfaye" uniqKey="Wubet T" first="Tesfaye" last="Wubet">Tesfaye Wubet</name>
</author>
<author>
<name sortKey="Herrmann, Sylvie" sort="Herrmann, Sylvie" uniqKey="Herrmann S" first="Sylvie" last="Herrmann">Sylvie Herrmann</name>
</author>
<author>
<name sortKey="Buscot, Francois" sort="Buscot, Francois" uniqKey="Buscot F" first="François" last="Buscot">François Buscot</name>
</author>
<author>
<name sortKey="Tarkka, Mika T" sort="Tarkka, Mika T" uniqKey="Tarkka M" first="Mika T" last="Tarkka">Mika T. Tarkka</name>
</author>
</analytic>
<series>
<title level="j">BMC microbiology</title>
<idno type="eISSN">1471-2180</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Load (MeSH)</term>
<term>Basidiomycota (growth & development)</term>
<term>Basidiomycota (physiology)</term>
<term>Colony Count, Microbial (MeSH)</term>
<term>DNA Primers (genetics)</term>
<term>DNA, Bacterial (genetics)</term>
<term>DNA, Fungal (genetics)</term>
<term>Microbial Interactions (MeSH)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Streptomyces (growth & development)</term>
<term>Streptomyces (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primers</term>
<term>DNA, Bacterial</term>
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bacterial Load</term>
<term>Colony Count, Microbial</term>
<term>Microbial Interactions</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Host plant roots, mycorrhizal mycelium and microbes are important and potentially interacting factors shaping the performance of mycorrhization helper bacteria (MHB). We investigated the impact of a soil microbial community on the interaction between the extraradical mycelium of the ectomycorrhizal fungus Piloderma croceum and the MHB Streptomyces sp. AcH 505 in both the presence and the absence of pedunculate oak microcuttings.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Specific primers were designed to target the internal transcribed spacer of the rDNA and an intergenic region between two protein encoding genes of P. croceum and the intergenic region between the gyrA and gyrB genes of AcH 505. These primers were used to perform real-time PCR with DNA extracted from soil samples. With a sensitivity of 10 genome copies and a linear range of 6 orders of magnitude, these real-time PCR assays enabled the quantification of purified DNA from P. croceum and AcH 505, respectively. In soil microcosms, the fungal PCR signal was not affected by AcH 505 in the absence of the host plant. However, the fungal signal became weaker in the presence of the plant. This decrease was only observed in microbial filtrate amended microcosms. In contrast, the PCR signal of AcH 505 increased in the presence of P. croceum. The increase was not significant in sterile microcosms that contained plant roots.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Real-time quantitative PCR assays provide a method for directly detecting and quantifying MHB and mycorrhizal fungi in plant microcosms. Our study indicates that the presence of microorganisms and plant roots can both affect the nature of MHB-fungus interactions, and that mycorrhizal fungi may enhance MHB growth.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24025151</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2180</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>BMC microbiology</Title>
<ISOAbbreviation>BMC Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity.</ArticleTitle>
<Pagination>
<MedlinePgn>205</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2180-13-205</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Host plant roots, mycorrhizal mycelium and microbes are important and potentially interacting factors shaping the performance of mycorrhization helper bacteria (MHB). We investigated the impact of a soil microbial community on the interaction between the extraradical mycelium of the ectomycorrhizal fungus Piloderma croceum and the MHB Streptomyces sp. AcH 505 in both the presence and the absence of pedunculate oak microcuttings.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Specific primers were designed to target the internal transcribed spacer of the rDNA and an intergenic region between two protein encoding genes of P. croceum and the intergenic region between the gyrA and gyrB genes of AcH 505. These primers were used to perform real-time PCR with DNA extracted from soil samples. With a sensitivity of 10 genome copies and a linear range of 6 orders of magnitude, these real-time PCR assays enabled the quantification of purified DNA from P. croceum and AcH 505, respectively. In soil microcosms, the fungal PCR signal was not affected by AcH 505 in the absence of the host plant. However, the fungal signal became weaker in the presence of the plant. This decrease was only observed in microbial filtrate amended microcosms. In contrast, the PCR signal of AcH 505 increased in the presence of P. croceum. The increase was not significant in sterile microcosms that contained plant roots.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Real-time quantitative PCR assays provide a method for directly detecting and quantifying MHB and mycorrhizal fungi in plant microcosms. Our study indicates that the presence of microorganisms and plant roots can both affect the nature of MHB-fungus interactions, and that mycorrhizal fungi may enhance MHB growth.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kurth</LastName>
<ForeName>Florence</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str, 4, 06120 Halle/Saale, Germany. florence.kurth@ufz.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zeitler</LastName>
<ForeName>Katharina</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feldhahn</LastName>
<ForeName>Lasse</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Neu</LastName>
<ForeName>Thomas R</ForeName>
<Initials>TR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weber</LastName>
<ForeName>Tilmann</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Krištůfek</LastName>
<ForeName>Václav</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wubet</LastName>
<ForeName>Tesfaye</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Herrmann</LastName>
<ForeName>Sylvie</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Buscot</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tarkka</LastName>
<ForeName>Mika T</ForeName>
<Initials>MT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Microbiol</MedlineTA>
<NlmUniqueID>100966981</NlmUniqueID>
<ISSNLinking>1471-2180</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058491" MajorTopicYN="N">Bacterial Load</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015169" MajorTopicYN="N">Colony Count, Microbial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056265" MajorTopicYN="Y">Microbial Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013302" MajorTopicYN="N">Streptomyces</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24025151</ArticleId>
<ArticleId IdType="pii">1471-2180-13-205</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2180-13-205</ArticleId>
<ArticleId IdType="pmc">PMC3848169</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2012 Jun;159(2):789-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2010 Mar;34(2):171-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Sep;69(9):5603-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12957950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2009 May;47(5):1325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2011 Jul-Aug;103(4):731-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21289107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Oct;168(1):205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16159334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(1):22-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2003 Aug 1;45(3):283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19719597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):52-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2002 Jan;58(1):46-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11831475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2005 Apr;49(3):416-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16003472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Nov;75(22):7079-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19783744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 May;161(5):509-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15202707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 May;72(5):3550-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012;12:164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22852578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Jan;63(1):139-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Jun;13(3):159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jun;166(3):1011-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15869659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2008 Jun;94(1):11-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18418729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Jan;67(1):6-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19120456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):292-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2007 Aug;52(2):77-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17632722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2005 Nov;7(6):713-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(4):743-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17688589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 May;189(10):3683-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17384190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1999 Feb 1;171(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9987836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Jun;72(3):313-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20370828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(2):529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23672230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2005 Sep;29(4):795-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Feb;133(2):203-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8436270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Apr;63(4):1288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9097426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2887-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(4):892-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17504470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1997 Jan;47(1):202-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8995823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2007 Feb;16(4):881-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17284218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Mar;76(6):2009-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2011 Dec;75(4):583-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22126995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2009 Jun;3(6):675-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19242534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Apr;68(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243436</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B07 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001B07 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24025151
   |texte=   Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24025151" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020