Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants.

Identifieur interne : 001A84 ( Main/Corpus ); précédent : 001A83; suivant : 001A85

Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants.

Auteurs : Heikham Evelin ; Rupam Kapoor

Source :

RBID : pubmed:24113907

English descriptors

Abstract

An experiment was conducted to evaluate the influence of Glomus intraradices colonization on the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (PX), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the accumulation of nonenzymatic antioxidants (ascorbic acid, α-tocopherol, glutathione, and carotenoids) in roots and leaves of fenugreek plants subjected to varying degrees of salinity (0, 50, 100, and 200 mM NaCl) at two time intervals (1 and 14 days after saline treatment, DAT). The antioxidative capacity was correlated with oxidative damage in the same tissue. Under salt stress, lipid peroxidation and H2O2 concentration increased with increasing severity and duration of salt stress (DoS). However, the extent of oxidative damage in mycorrhizal plants was less compared to nonmycorrhizal plants. The study reveals that mycorrhiza-mediated attenuation of oxidative stress in fenugreek plants is due to enhanced activity of antioxidant enzymes and higher concentrations of antioxidant molecules. However, the significant effect of G. intraradices colonization on individual antioxidant molecules and enzymes varied with plant tissue, salinity level, and DoS. The significant effect of G. intraradices colonization on antioxidative enzymes was more evident at 1DAT in both leaves and roots, while the concentrations of antioxidant molecules were significantly influenced at 14DAT. It is proposed that AM symbiosis can improve antioxidative defense systems of plants through higher SOD activity in M plants, facilitating rapid dismutation of O2 (-) to H2O2, and subsequent prevention of H2O2 build-up by higher activities of CAT, APX, and PX. The potential of G. intraradices to ameliorate oxidative stress generated in fenugreek plants by salinity was more evident at higher intensities of salt stress.

DOI: 10.1007/s00572-013-0529-4
PubMed: 24113907

Links to Exploration step

pubmed:24113907

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants.</title>
<author>
<name sortKey="Evelin, Heikham" sort="Evelin, Heikham" uniqKey="Evelin H" first="Heikham" last="Evelin">Heikham Evelin</name>
<affiliation>
<nlm:affiliation>Applied Mycology Laboratory, Department of Botany, University of Delhi, Delhi, 110 007, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kapoor, Rupam" sort="Kapoor, Rupam" uniqKey="Kapoor R" first="Rupam" last="Kapoor">Rupam Kapoor</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24113907</idno>
<idno type="pmid">24113907</idno>
<idno type="doi">10.1007/s00572-013-0529-4</idno>
<idno type="wicri:Area/Main/Corpus">001A84</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A84</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants.</title>
<author>
<name sortKey="Evelin, Heikham" sort="Evelin, Heikham" uniqKey="Evelin H" first="Heikham" last="Evelin">Heikham Evelin</name>
<affiliation>
<nlm:affiliation>Applied Mycology Laboratory, Department of Botany, University of Delhi, Delhi, 110 007, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kapoor, Rupam" sort="Kapoor, Rupam" uniqKey="Kapoor R" first="Rupam" last="Kapoor">Rupam Kapoor</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Catalase (metabolism)</term>
<term>Glomeromycota (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Peroxidase (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (enzymology)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Sodium Chloride (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Superoxide Dismutase (metabolism)</term>
<term>Symbiosis (MeSH)</term>
<term>Trigonella (enzymology)</term>
<term>Trigonella (microbiology)</term>
<term>Trigonella (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Catalase</term>
<term>Peroxidase</term>
<term>Plant Proteins</term>
<term>Sodium Chloride</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plant Roots</term>
<term>Trigonella</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Trigonella</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Trigonella</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidative Stress</term>
<term>Stress, Physiological</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An experiment was conducted to evaluate the influence of Glomus intraradices colonization on the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (PX), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the accumulation of nonenzymatic antioxidants (ascorbic acid, α-tocopherol, glutathione, and carotenoids) in roots and leaves of fenugreek plants subjected to varying degrees of salinity (0, 50, 100, and 200 mM NaCl) at two time intervals (1 and 14 days after saline treatment, DAT). The antioxidative capacity was correlated with oxidative damage in the same tissue. Under salt stress, lipid peroxidation and H2O2 concentration increased with increasing severity and duration of salt stress (DoS). However, the extent of oxidative damage in mycorrhizal plants was less compared to nonmycorrhizal plants. The study reveals that mycorrhiza-mediated attenuation of oxidative stress in fenugreek plants is due to enhanced activity of antioxidant enzymes and higher concentrations of antioxidant molecules. However, the significant effect of G. intraradices colonization on individual antioxidant molecules and enzymes varied with plant tissue, salinity level, and DoS. The significant effect of G. intraradices colonization on antioxidative enzymes was more evident at 1DAT in both leaves and roots, while the concentrations of antioxidant molecules were significantly influenced at 14DAT. It is proposed that AM symbiosis can improve antioxidative defense systems of plants through higher SOD activity in M plants, facilitating rapid dismutation of O2 (-) to H2O2, and subsequent prevention of H2O2 build-up by higher activities of CAT, APX, and PX. The potential of G. intraradices to ameliorate oxidative stress generated in fenugreek plants by salinity was more evident at higher intensities of salt stress. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24113907</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants.</ArticleTitle>
<Pagination>
<MedlinePgn>197-208</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-013-0529-4</ELocationID>
<Abstract>
<AbstractText>An experiment was conducted to evaluate the influence of Glomus intraradices colonization on the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (PX), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the accumulation of nonenzymatic antioxidants (ascorbic acid, α-tocopherol, glutathione, and carotenoids) in roots and leaves of fenugreek plants subjected to varying degrees of salinity (0, 50, 100, and 200 mM NaCl) at two time intervals (1 and 14 days after saline treatment, DAT). The antioxidative capacity was correlated with oxidative damage in the same tissue. Under salt stress, lipid peroxidation and H2O2 concentration increased with increasing severity and duration of salt stress (DoS). However, the extent of oxidative damage in mycorrhizal plants was less compared to nonmycorrhizal plants. The study reveals that mycorrhiza-mediated attenuation of oxidative stress in fenugreek plants is due to enhanced activity of antioxidant enzymes and higher concentrations of antioxidant molecules. However, the significant effect of G. intraradices colonization on individual antioxidant molecules and enzymes varied with plant tissue, salinity level, and DoS. The significant effect of G. intraradices colonization on antioxidative enzymes was more evident at 1DAT in both leaves and roots, while the concentrations of antioxidant molecules were significantly influenced at 14DAT. It is proposed that AM symbiosis can improve antioxidative defense systems of plants through higher SOD activity in M plants, facilitating rapid dismutation of O2 (-) to H2O2, and subsequent prevention of H2O2 build-up by higher activities of CAT, APX, and PX. The potential of G. intraradices to ameliorate oxidative stress generated in fenugreek plants by salinity was more evident at higher intensities of salt stress. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Evelin</LastName>
<ForeName>Heikham</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Applied Mycology Laboratory, Department of Botany, University of Delhi, Delhi, 110 007, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kapoor</LastName>
<ForeName>Rupam</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.7</RegistryNumber>
<NameOfSubstance UI="D009195">Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009195" MajorTopicYN="N">Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029910" MajorTopicYN="N">Trigonella</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24113907</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-013-0529-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Physiol Plant. 2007 Nov;131(3):399-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18251879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1949 Jan;24(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16654194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1986 Dec;251(2):567-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3800386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1998 Dec;11(12):1398-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2007 Oct 1;59(2):128-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1984;105:121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6727660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Dec;104(7):1263-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2009 Jan-Feb;27(1):84-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18950697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Apr;22(3):203-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21695577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1994;234:354-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7808307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1976 Jan;133(1):21-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24425174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(11):4033-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lipids. 1992 Jul;27(7):543-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1453885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1968 Apr;125(1):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5655425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Apr;5(4):369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Apr;33(4):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Jan;23(1):71-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22733451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 Nov;163(11):1101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Nov;218(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14513379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Dec;48(12):909-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20870416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2011 Feb;38(2):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21356527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A84 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001A84 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24113907
   |texte=   Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24113907" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020