Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis.

Identifieur interne : 001A74 ( Main/Corpus ); précédent : 001A73; suivant : 001A75

Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis.

Auteurs : Pavla Doubková ; Radka Sudová

Source :

RBID : pubmed:24136374

English descriptors

Abstract

Serpentine soils have naturally elevated concentrations of certain heavy metals, including nickel. This study addressed the role of plant origin (serpentine vs. non-serpentine) and symbiosis with arbuscular mycorrhizal fungi (AMF) in plant Ni tolerance. A semi-hydroponic experiment involving three levels of Ni and serpentine and non-serpentine AMF isolates and populations of a model plant species (Knautia arvensis) revealed considerable negative effects of elevated Ni availability on both plant and fungal performance. Plant growth response to Ni was independent of edaphic origin; however, higher Ni tolerance of serpentine plants was indicated by a smaller decline in the concentrations of photosynthetic pigments and restricted root-to-shoot Ni translocation. Serpentine plants also retained relatively more Mg in their roots, resulting in a higher shoot Ca/Mg ratio. AMF inoculation, especially with the non-serpentine isolate, further aggravated Ni toxicity to host plants. Therefore, AMF do not appear to be involved in Ni tolerance of serpentine K. arvensis plants.

DOI: 10.1007/s00572-013-0532-9
PubMed: 24136374

Links to Exploration step

pubmed:24136374

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Doubkova, Pavla" sort="Doubkova, Pavla" uniqKey="Doubkova P" first="Pavla" last="Doubková">Pavla Doubková</name>
<affiliation>
<nlm:affiliation>Institute of Botany, Academy of Sciences of the Czech Republic, 252 43, Průhonice, Czech Republic, dbp@centrum.cz.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sudova, Radka" sort="Sudova, Radka" uniqKey="Sudova R" first="Radka" last="Sudová">Radka Sudová</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24136374</idno>
<idno type="pmid">24136374</idno>
<idno type="doi">10.1007/s00572-013-0532-9</idno>
<idno type="wicri:Area/Main/Corpus">001A74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Doubkova, Pavla" sort="Doubkova, Pavla" uniqKey="Doubkova P" first="Pavla" last="Doubková">Pavla Doubková</name>
<affiliation>
<nlm:affiliation>Institute of Botany, Academy of Sciences of the Czech Republic, 252 43, Průhonice, Czech Republic, dbp@centrum.cz.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sudova, Radka" sort="Sudova, Radka" uniqKey="Sudova R" first="Radka" last="Sudová">Radka Sudová</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dipsacaceae (drug effects)</term>
<term>Dipsacaceae (microbiology)</term>
<term>Dipsacaceae (physiology)</term>
<term>Fungi (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nickel (pharmacology)</term>
<term>Plants (drug effects)</term>
<term>Plants (microbiology)</term>
<term>Plants (parasitology)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Nickel</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Dipsacaceae</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Dipsacaceae</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Dipsacaceae</term>
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Serpentine soils have naturally elevated concentrations of certain heavy metals, including nickel. This study addressed the role of plant origin (serpentine vs. non-serpentine) and symbiosis with arbuscular mycorrhizal fungi (AMF) in plant Ni tolerance. A semi-hydroponic experiment involving three levels of Ni and serpentine and non-serpentine AMF isolates and populations of a model plant species (Knautia arvensis) revealed considerable negative effects of elevated Ni availability on both plant and fungal performance. Plant growth response to Ni was independent of edaphic origin; however, higher Ni tolerance of serpentine plants was indicated by a smaller decline in the concentrations of photosynthetic pigments and restricted root-to-shoot Ni translocation. Serpentine plants also retained relatively more Mg in their roots, resulting in a higher shoot Ca/Mg ratio. AMF inoculation, especially with the non-serpentine isolate, further aggravated Ni toxicity to host plants. Therefore, AMF do not appear to be involved in Ni tolerance of serpentine K. arvensis plants. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24136374</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis.</ArticleTitle>
<Pagination>
<MedlinePgn>209-17</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-013-0532-9</ELocationID>
<Abstract>
<AbstractText>Serpentine soils have naturally elevated concentrations of certain heavy metals, including nickel. This study addressed the role of plant origin (serpentine vs. non-serpentine) and symbiosis with arbuscular mycorrhizal fungi (AMF) in plant Ni tolerance. A semi-hydroponic experiment involving three levels of Ni and serpentine and non-serpentine AMF isolates and populations of a model plant species (Knautia arvensis) revealed considerable negative effects of elevated Ni availability on both plant and fungal performance. Plant growth response to Ni was independent of edaphic origin; however, higher Ni tolerance of serpentine plants was indicated by a smaller decline in the concentrations of photosynthetic pigments and restricted root-to-shoot Ni translocation. Serpentine plants also retained relatively more Mg in their roots, resulting in a higher shoot Ca/Mg ratio. AMF inoculation, especially with the non-serpentine isolate, further aggravated Ni toxicity to host plants. Therefore, AMF do not appear to be involved in Ni tolerance of serpentine K. arvensis plants. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Doubková</LastName>
<ForeName>Pavla</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Institute of Botany, Academy of Sciences of the Czech Republic, 252 43, Průhonice, Czech Republic, dbp@centrum.cz.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sudová</LastName>
<ForeName>Radka</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>7OV03QG267</RegistryNumber>
<NameOfSubstance UI="D009532">Nickel</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D049917" MajorTopicYN="N">Dipsacaceae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009532" MajorTopicYN="N">Nickel</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24136374</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-013-0532-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecology. 2010 Oct;91(10):3037-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21058563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Dec;19(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18773228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Jun;12(3):125-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12072982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2011 Jan;57(1):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Apr;103(6):963-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19196717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2008 Nov;83(4):495-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2010 Jul;73(5):982-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Oct;23(7):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23588949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Feb 1;116(2):447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):950-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Aug;13(4):185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12938030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2008 Feb;151(3):593-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17555852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2011 Dec;159(12):3730-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21835516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2001 Nov;21(2):190-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11697915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2011 Nov;18(9):1478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21533918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 1998 Feb;7(5):237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24578048</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001A74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24136374
   |texte=   Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24136374" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020