Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.

Identifieur interne : 001A70 ( Main/Corpus ); précédent : 001A69; suivant : 001A71

Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.

Auteurs : Lori A. Phillips ; Valerie Ward ; Melanie D. Jones

Source :

RBID : pubmed:24173458

English descriptors

Abstract

Soils of northern temperate and boreal forests represent a large terrestrial carbon (C) sink. The fate of this C under elevated atmospheric CO2 and climate change is still uncertain. A fundamental knowledge gap is the extent to which ectomycorrhizal fungi (EMF) and saprotrophic fungi contribute to C cycling in the systems by soil organic matter (SOM) decomposition. In this study, we used a novel approach to generate and compare enzymatically active EMF hyphae-dominated and saprotrophic hyphae-enriched communities under field conditions. Fermentation-humus (FH)-filled mesh bags, surrounded by a sand barrier, effectively trapped EMF hyphae with a community structure comparable to that found in the surrounding FH layer, at both trophic and taxonomic levels. In contrast, over half the sequences from mesh bags with no sand barrier were identified as belonging to saprotrophic fungi. The EMF hyphae-dominated systems exhibited levels of hydrolytic and oxidative enzyme activities that were comparable to or higher than saprotroph-enriched systems. The enzymes assayed included those associated with both labile and recalcitrant SOM degradation. Our study shows that EMF hyphae are likely important contributors to current SOM turnover in sub-boreal systems. Our results also suggest that any increased EMF biomass that might result from higher below-ground C allocation by trees would not suppress C fluxes from sub-boreal soils.

DOI: 10.1038/ismej.2013.195
PubMed: 24173458
PubMed Central: PMC3930324

Links to Exploration step

pubmed:24173458

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.</title>
<author>
<name sortKey="Phillips, Lori A" sort="Phillips, Lori A" uniqKey="Phillips L" first="Lori A" last="Phillips">Lori A. Phillips</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada. lori.phillips@dpi.vic.gov.au.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Environment and Primary Industries, Biosciences Research Division, Bundoora, Victoria, Australia. lori.phillips@dpi.vic.gov.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ward, Valerie" sort="Ward, Valerie" uniqKey="Ward V" first="Valerie" last="Ward">Valerie Ward</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jones, Melanie D" sort="Jones, Melanie D" uniqKey="Jones M" first="Melanie D" last="Jones">Melanie D. Jones</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24173458</idno>
<idno type="pmid">24173458</idno>
<idno type="doi">10.1038/ismej.2013.195</idno>
<idno type="pmc">PMC3930324</idno>
<idno type="wicri:Area/Main/Corpus">001A70</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A70</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.</title>
<author>
<name sortKey="Phillips, Lori A" sort="Phillips, Lori A" uniqKey="Phillips L" first="Lori A" last="Phillips">Lori A. Phillips</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada. lori.phillips@dpi.vic.gov.au.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Environment and Primary Industries, Biosciences Research Division, Bundoora, Victoria, Australia. lori.phillips@dpi.vic.gov.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ward, Valerie" sort="Ward, Valerie" uniqKey="Ward V" first="Valerie" last="Ward">Valerie Ward</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jones, Melanie D" sort="Jones, Melanie D" uniqKey="Jones M" first="Melanie D" last="Jones">Melanie D. Jones</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The ISME journal</title>
<idno type="eISSN">1751-7370</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Fungi (classification)</term>
<term>Fungi (isolation & purification)</term>
<term>Fungi (metabolism)</term>
<term>Hyphae (metabolism)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Trees (metabolism)</term>
<term>Trees (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fungi</term>
<term>Hyphae</term>
<term>Mycorrhizae</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soils of northern temperate and boreal forests represent a large terrestrial carbon (C) sink. The fate of this C under elevated atmospheric CO2 and climate change is still uncertain. A fundamental knowledge gap is the extent to which ectomycorrhizal fungi (EMF) and saprotrophic fungi contribute to C cycling in the systems by soil organic matter (SOM) decomposition. In this study, we used a novel approach to generate and compare enzymatically active EMF hyphae-dominated and saprotrophic hyphae-enriched communities under field conditions. Fermentation-humus (FH)-filled mesh bags, surrounded by a sand barrier, effectively trapped EMF hyphae with a community structure comparable to that found in the surrounding FH layer, at both trophic and taxonomic levels. In contrast, over half the sequences from mesh bags with no sand barrier were identified as belonging to saprotrophic fungi. The EMF hyphae-dominated systems exhibited levels of hydrolytic and oxidative enzyme activities that were comparable to or higher than saprotroph-enriched systems. The enzymes assayed included those associated with both labile and recalcitrant SOM degradation. Our study shows that EMF hyphae are likely important contributors to current SOM turnover in sub-boreal systems. Our results also suggest that any increased EMF biomass that might result from higher below-ground C allocation by trees would not suppress C fluxes from sub-boreal soils. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">24173458</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1751-7370</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>The ISME journal</Title>
<ISOAbbreviation>ISME J</ISOAbbreviation>
</Journal>
<ArticleTitle>Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.</ArticleTitle>
<Pagination>
<MedlinePgn>699-713</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ismej.2013.195</ELocationID>
<Abstract>
<AbstractText>Soils of northern temperate and boreal forests represent a large terrestrial carbon (C) sink. The fate of this C under elevated atmospheric CO2 and climate change is still uncertain. A fundamental knowledge gap is the extent to which ectomycorrhizal fungi (EMF) and saprotrophic fungi contribute to C cycling in the systems by soil organic matter (SOM) decomposition. In this study, we used a novel approach to generate and compare enzymatically active EMF hyphae-dominated and saprotrophic hyphae-enriched communities under field conditions. Fermentation-humus (FH)-filled mesh bags, surrounded by a sand barrier, effectively trapped EMF hyphae with a community structure comparable to that found in the surrounding FH layer, at both trophic and taxonomic levels. In contrast, over half the sequences from mesh bags with no sand barrier were identified as belonging to saprotrophic fungi. The EMF hyphae-dominated systems exhibited levels of hydrolytic and oxidative enzyme activities that were comparable to or higher than saprotroph-enriched systems. The enzymes assayed included those associated with both labile and recalcitrant SOM degradation. Our study shows that EMF hyphae are likely important contributors to current SOM turnover in sub-boreal systems. Our results also suggest that any increased EMF biomass that might result from higher below-ground C allocation by trees would not suppress C fluxes from sub-boreal soils. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Phillips</LastName>
<ForeName>Lori A</ForeName>
<Initials>LA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada. lori.phillips@dpi.vic.gov.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Environment and Primary Industries, Biosciences Research Division, Bundoora, Victoria, Australia. lori.phillips@dpi.vic.gov.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ward</LastName>
<ForeName>Valerie</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>Melanie D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>ISME J</MedlineTA>
<NlmUniqueID>101301086</NlmUniqueID>
<ISSNLinking>1751-7362</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>07</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24173458</ArticleId>
<ArticleId IdType="pii">10.1038/ismej.2013.195</ArticleId>
<ArticleId IdType="doi">10.1038/ismej.2013.195</ArticleId>
<ArticleId IdType="pmc">PMC3930324</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2012 Aug 31;337(6098):1084-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e39597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22815710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000 Biol Rep. 2011;3:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Nov;11(11):1252-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2012 Jun;14(6):1477-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22469289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2002 Feb 1;39(2):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Sep;6(9):1749-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 29;339(6127):1615-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23539604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Nov;22(8):615-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22451218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Aug;22(6):409-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22005782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Sep;195(4):832-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22758212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10938-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 May;14(5):493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21395963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D32-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Sep;15(9):1042-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22776588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Aug;167(2):579-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 Nov;5(11):1701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21544102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Jun;80(3):735-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22379979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2004 Aug;58(2):233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15234521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 28;407(6803):506-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11029000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(4):798-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Sep;187(4):1124-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Sep;89(9):2384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18831158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Jun;12(3):105-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12072980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 May;46(5):427-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19373972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(3):611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2013 Jul;37(4):477-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22978352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Jan;22(1):41-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21484339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2006 Nov;58(2):214-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17064263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2008;8:50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18282272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2013 Aug;172(4):1179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23263530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2008 Jun;112(Pt 6):681-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 15;464(7291):1033-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jul 15;26(14):1783-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20562416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 1;26(5):680-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 6;478(7367):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21979045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(6):e10971</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20532045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Dec;16(1):33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16177926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2007 Nov;62(2):142-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17892477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 Feb;21(2-3):71-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11303651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1993 Apr;2(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2012 Feb;14(2):285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21923700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2009 Dec;3(12):1387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2012 Aug;88(10):1154-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22475148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(1):179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001A70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24173458
   |texte=   Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24173458" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020