Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.

Identifieur interne : 001986 ( Main/Corpus ); précédent : 001985; suivant : 001987

Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.

Auteurs : Colin Averill ; Benjamin L. Turner ; Adrien C. Finzi

Source :

RBID : pubmed:24402225

English descriptors

Abstract

Soil contains more carbon than the atmosphere and vegetation combined. Understanding the mechanisms controlling the accumulation and stability of soil carbon is critical to predicting the Earth's future climate. Recent studies suggest that decomposition of soil organic matter is often limited by nitrogen availability to microbes and that plants, via their fungal symbionts, compete directly with free-living decomposers for nitrogen. Ectomycorrhizal and ericoid mycorrhizal (EEM) fungi produce nitrogen-degrading enzymes, allowing them greater access to organic nitrogen sources than arbuscular mycorrhizal (AM) fungi. This leads to the theoretical prediction that soil carbon storage is greater in ecosystems dominated by EEM fungi than in those dominated by AM fungi. Using global data sets, we show that soil in ecosystems dominated by EEM-associated plants contains 70% more carbon per unit nitrogen than soil in ecosystems dominated by AM-associated plants. The effect of mycorrhizal type on soil carbon is independent of, and of far larger consequence than, the effects of net primary production, temperature, precipitation and soil clay content. Hence the effect of mycorrhizal type on soil carbon content holds at the global scale. This finding links the functional traits of mycorrhizal fungi to carbon storage at ecosystem-to-global scales, suggesting that plant-decomposer competition for nutrients exerts a fundamental control over the terrestrial carbon cycle.

DOI: 10.1038/nature12901
PubMed: 24402225

Links to Exploration step

pubmed:24402225

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.</title>
<author>
<name sortKey="Averill, Colin" sort="Averill, Colin" uniqKey="Averill C" first="Colin" last="Averill">Colin Averill</name>
<affiliation>
<nlm:affiliation>Department of Integrative Biology, Graduate Program in Ecology, Evolution and Behavior, University of Texas at Austin, Austin, Texas 78712, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turner, Benjamin L" sort="Turner, Benjamin L" uniqKey="Turner B" first="Benjamin L" last="Turner">Benjamin L. Turner</name>
<affiliation>
<nlm:affiliation>Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Finzi, Adrien C" sort="Finzi, Adrien C" uniqKey="Finzi A" first="Adrien C" last="Finzi">Adrien C. Finzi</name>
<affiliation>
<nlm:affiliation>Department of Biology, Boston University, Boston, Masachusetts 02215, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24402225</idno>
<idno type="pmid">24402225</idno>
<idno type="doi">10.1038/nature12901</idno>
<idno type="wicri:Area/Main/Corpus">001986</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001986</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.</title>
<author>
<name sortKey="Averill, Colin" sort="Averill, Colin" uniqKey="Averill C" first="Colin" last="Averill">Colin Averill</name>
<affiliation>
<nlm:affiliation>Department of Integrative Biology, Graduate Program in Ecology, Evolution and Behavior, University of Texas at Austin, Austin, Texas 78712, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turner, Benjamin L" sort="Turner, Benjamin L" uniqKey="Turner B" first="Benjamin L" last="Turner">Benjamin L. Turner</name>
<affiliation>
<nlm:affiliation>Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Finzi, Adrien C" sort="Finzi, Adrien C" uniqKey="Finzi A" first="Adrien C" last="Finzi">Adrien C. Finzi</name>
<affiliation>
<nlm:affiliation>Department of Biology, Boston University, Boston, Masachusetts 02215, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature</title>
<idno type="eISSN">1476-4687</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminum Silicates (analysis)</term>
<term>Biota (genetics)</term>
<term>Carbon (analysis)</term>
<term>Carbon (metabolism)</term>
<term>Carbon Cycle (MeSH)</term>
<term>Clay (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (enzymology)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Nitrogen (analysis)</term>
<term>Nitrogen (metabolism)</term>
<term>Plants (metabolism)</term>
<term>Plants (microbiology)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Aluminum Silicates</term>
<term>Carbon</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Biota</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Mycorrhizae</term>
<term>Nitrogen</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbon Cycle</term>
<term>Clay</term>
<term>Ecosystem</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil contains more carbon than the atmosphere and vegetation combined. Understanding the mechanisms controlling the accumulation and stability of soil carbon is critical to predicting the Earth's future climate. Recent studies suggest that decomposition of soil organic matter is often limited by nitrogen availability to microbes and that plants, via their fungal symbionts, compete directly with free-living decomposers for nitrogen. Ectomycorrhizal and ericoid mycorrhizal (EEM) fungi produce nitrogen-degrading enzymes, allowing them greater access to organic nitrogen sources than arbuscular mycorrhizal (AM) fungi. This leads to the theoretical prediction that soil carbon storage is greater in ecosystems dominated by EEM fungi than in those dominated by AM fungi. Using global data sets, we show that soil in ecosystems dominated by EEM-associated plants contains 70% more carbon per unit nitrogen than soil in ecosystems dominated by AM-associated plants. The effect of mycorrhizal type on soil carbon is independent of, and of far larger consequence than, the effects of net primary production, temperature, precipitation and soil clay content. Hence the effect of mycorrhizal type on soil carbon content holds at the global scale. This finding links the functional traits of mycorrhizal fungi to carbon storage at ecosystem-to-global scales, suggesting that plant-decomposer competition for nutrients exerts a fundamental control over the terrestrial carbon cycle. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24402225</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1476-4687</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>505</Volume>
<Issue>7484</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jan</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Nature</Title>
<ISOAbbreviation>Nature</ISOAbbreviation>
</Journal>
<ArticleTitle>Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.</ArticleTitle>
<Pagination>
<MedlinePgn>543-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nature12901</ELocationID>
<Abstract>
<AbstractText>Soil contains more carbon than the atmosphere and vegetation combined. Understanding the mechanisms controlling the accumulation and stability of soil carbon is critical to predicting the Earth's future climate. Recent studies suggest that decomposition of soil organic matter is often limited by nitrogen availability to microbes and that plants, via their fungal symbionts, compete directly with free-living decomposers for nitrogen. Ectomycorrhizal and ericoid mycorrhizal (EEM) fungi produce nitrogen-degrading enzymes, allowing them greater access to organic nitrogen sources than arbuscular mycorrhizal (AM) fungi. This leads to the theoretical prediction that soil carbon storage is greater in ecosystems dominated by EEM fungi than in those dominated by AM fungi. Using global data sets, we show that soil in ecosystems dominated by EEM-associated plants contains 70% more carbon per unit nitrogen than soil in ecosystems dominated by AM-associated plants. The effect of mycorrhizal type on soil carbon is independent of, and of far larger consequence than, the effects of net primary production, temperature, precipitation and soil clay content. Hence the effect of mycorrhizal type on soil carbon content holds at the global scale. This finding links the functional traits of mycorrhizal fungi to carbon storage at ecosystem-to-global scales, suggesting that plant-decomposer competition for nutrients exerts a fundamental control over the terrestrial carbon cycle. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Averill</LastName>
<ForeName>Colin</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, Graduate Program in Ecology, Evolution and Behavior, University of Texas at Austin, Austin, Texas 78712, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Turner</LastName>
<ForeName>Benjamin L</ForeName>
<Initials>BL</Initials>
<AffiliationInfo>
<Affiliation>Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Finzi</LastName>
<ForeName>Adrien C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Boston University, Boston, Masachusetts 02215, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nature</MedlineTA>
<NlmUniqueID>0410462</NlmUniqueID>
<ISSNLinking>0028-0836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000538">Aluminum Silicates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>T1FAD4SS2M</RegistryNumber>
<NameOfSubstance UI="D000077215">Clay</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nature. 2014 Jan 23;505(7484):486-7</RefSource>
<PMID Version="1">24402226</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000538" MajorTopicYN="N">Aluminum Silicates</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058448" MajorTopicYN="N">Biota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057486" MajorTopicYN="Y">Carbon Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000077215" MajorTopicYN="N">Clay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24402225</ArticleId>
<ArticleId IdType="pii">nature12901</ArticleId>
<ArticleId IdType="doi">10.1038/nature12901</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2012 Aug 31;337(6098):1084-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Feb;89(2):371-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18409427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Mar;155(3):583-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18210159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 20;433(7023):298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15662420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 May;14(5):493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21395963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 9;440(7081):165-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16525463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Aug 20;329(5994):940-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 05;478(7367):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21979045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2011 Apr;92(4):883-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21661551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1971 Sep 10;233(5315):133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16063238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Jun 16;268(5217):1606-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17754615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Apr;19(4):988-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Sep 20;413(6853):297-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11565029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 May;160(1):129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19238450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Jul;4(7):872-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20220789</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001986 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001986 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24402225
   |texte=   Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24402225" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020