Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas.

Identifieur interne : 001979 ( Main/Corpus ); précédent : 001978; suivant : 001980

Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas.

Auteurs : Nnenna E. Onwuchekwa ; Janusz J. Zwiazek ; Ali Quoreshi ; Damase P. Khasa

Source :

RBID : pubmed:24424508

English descriptors

Abstract

The effectiveness of ectomycorrhizal inoculation at the tree nursery seedling production stage on growth and survival was examined in jack pine (Pinus banksiana) and white spruce (Picea glauca) planted in oil sands reclamation sites. The seedlings were inoculated with Hebeloma crustuliniforme strain # UAMH 5247, Suillus tomentosus strain # UAMH 6252, and Laccaria bicolor strain # UAMH 8232, as individual pure cultures and in combinations. These treatments were demonstrated to improve salinity resistance and water uptake in conifer seedlings. The field responses of seedlings to ectomycorrhizal inoculation varied between plant species, inoculation treatments, and measured parameters. Seedling inoculation resulted in higher ectomycorrhizal colonization rates compared with non-inoculated control, which had also a relatively small proportion of roots colonized by the nursery contaminant fungi identified as Amphinema byssoides and Thelephora americana. Seedling inoculation had overall a greater effect on relative height growth rates, dry biomass, and stem volumes in jack pine compared with white spruce. However, when examined after two growing seasons, inoculated white spruce seedlings showed up to 75% higher survival rates than non-inoculated controls. The persistence of inoculated fungi in roots of planted seedlings was examined at the end of the second growing season. Although the inoculation with H. crustuliniforme triggered growth responses, the fungus was not found in the roots of seedlings at the end of the second growing season suggesting a possibility that the observed growth-promoting effect of H. crustuliniforme may be transient. The results suggest that the inoculation of conifer seedlings with ectomycorrhizal fungi could potentially be carried out on a large scale in tree nurseries to benefit postplanting performance in oil sands reclamation sites. However, these practices should take into consideration the differences in responses between the different plant species and fungal strains.

DOI: 10.1007/s00572-014-0555-x
PubMed: 24424508

Links to Exploration step

pubmed:24424508

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas.</title>
<author>
<name sortKey="Onwuchekwa, Nnenna E" sort="Onwuchekwa, Nnenna E" uniqKey="Onwuchekwa N" first="Nnenna E" last="Onwuchekwa">Nnenna E. Onwuchekwa</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zwiazek, Janusz J" sort="Zwiazek, Janusz J" uniqKey="Zwiazek J" first="Janusz J" last="Zwiazek">Janusz J. Zwiazek</name>
</author>
<author>
<name sortKey="Quoreshi, Ali" sort="Quoreshi, Ali" uniqKey="Quoreshi A" first="Ali" last="Quoreshi">Ali Quoreshi</name>
</author>
<author>
<name sortKey="Khasa, Damase P" sort="Khasa, Damase P" uniqKey="Khasa D" first="Damase P" last="Khasa">Damase P. Khasa</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24424508</idno>
<idno type="pmid">24424508</idno>
<idno type="doi">10.1007/s00572-014-0555-x</idno>
<idno type="wicri:Area/Main/Corpus">001979</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001979</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas.</title>
<author>
<name sortKey="Onwuchekwa, Nnenna E" sort="Onwuchekwa, Nnenna E" uniqKey="Onwuchekwa N" first="Nnenna E" last="Onwuchekwa">Nnenna E. Onwuchekwa</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zwiazek, Janusz J" sort="Zwiazek, Janusz J" uniqKey="Zwiazek J" first="Janusz J" last="Zwiazek">Janusz J. Zwiazek</name>
</author>
<author>
<name sortKey="Quoreshi, Ali" sort="Quoreshi, Ali" uniqKey="Quoreshi A" first="Ali" last="Quoreshi">Ali Quoreshi</name>
</author>
<author>
<name sortKey="Khasa, Damase P" sort="Khasa, Damase P" uniqKey="Khasa D" first="Damase P" last="Khasa">Damase P. Khasa</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (growth & development)</term>
<term>Biomass (MeSH)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Oils (MeSH)</term>
<term>Picea (growth & development)</term>
<term>Picea (microbiology)</term>
<term>Pinus (growth & development)</term>
<term>Pinus (microbiology)</term>
<term>Plant Development (MeSH)</term>
<term>Plant Roots (microbiology)</term>
<term>Seedlings (growth & development)</term>
<term>Seedlings (microbiology)</term>
<term>Soil (MeSH)</term>
<term>Soil Pollutants (MeSH)</term>
<term>Survival Analysis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Oils</term>
<term>Soil</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Picea</term>
<term>Pinus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Picea</term>
<term>Pinus</term>
<term>Plant Roots</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Plant Development</term>
<term>Survival Analysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effectiveness of ectomycorrhizal inoculation at the tree nursery seedling production stage on growth and survival was examined in jack pine (Pinus banksiana) and white spruce (Picea glauca) planted in oil sands reclamation sites. The seedlings were inoculated with Hebeloma crustuliniforme strain # UAMH 5247, Suillus tomentosus strain # UAMH 6252, and Laccaria bicolor strain # UAMH 8232, as individual pure cultures and in combinations. These treatments were demonstrated to improve salinity resistance and water uptake in conifer seedlings. The field responses of seedlings to ectomycorrhizal inoculation varied between plant species, inoculation treatments, and measured parameters. Seedling inoculation resulted in higher ectomycorrhizal colonization rates compared with non-inoculated control, which had also a relatively small proportion of roots colonized by the nursery contaminant fungi identified as Amphinema byssoides and Thelephora americana. Seedling inoculation had overall a greater effect on relative height growth rates, dry biomass, and stem volumes in jack pine compared with white spruce. However, when examined after two growing seasons, inoculated white spruce seedlings showed up to 75% higher survival rates than non-inoculated controls. The persistence of inoculated fungi in roots of planted seedlings was examined at the end of the second growing season. Although the inoculation with H. crustuliniforme triggered growth responses, the fungus was not found in the roots of seedlings at the end of the second growing season suggesting a possibility that the observed growth-promoting effect of H. crustuliniforme may be transient. The results suggest that the inoculation of conifer seedlings with ectomycorrhizal fungi could potentially be carried out on a large scale in tree nurseries to benefit postplanting performance in oil sands reclamation sites. However, these practices should take into consideration the differences in responses between the different plant species and fungal strains.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24424508</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas.</ArticleTitle>
<Pagination>
<MedlinePgn>431-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-014-0555-x</ELocationID>
<Abstract>
<AbstractText>The effectiveness of ectomycorrhizal inoculation at the tree nursery seedling production stage on growth and survival was examined in jack pine (Pinus banksiana) and white spruce (Picea glauca) planted in oil sands reclamation sites. The seedlings were inoculated with Hebeloma crustuliniforme strain # UAMH 5247, Suillus tomentosus strain # UAMH 6252, and Laccaria bicolor strain # UAMH 8232, as individual pure cultures and in combinations. These treatments were demonstrated to improve salinity resistance and water uptake in conifer seedlings. The field responses of seedlings to ectomycorrhizal inoculation varied between plant species, inoculation treatments, and measured parameters. Seedling inoculation resulted in higher ectomycorrhizal colonization rates compared with non-inoculated control, which had also a relatively small proportion of roots colonized by the nursery contaminant fungi identified as Amphinema byssoides and Thelephora americana. Seedling inoculation had overall a greater effect on relative height growth rates, dry biomass, and stem volumes in jack pine compared with white spruce. However, when examined after two growing seasons, inoculated white spruce seedlings showed up to 75% higher survival rates than non-inoculated controls. The persistence of inoculated fungi in roots of planted seedlings was examined at the end of the second growing season. Although the inoculation with H. crustuliniforme triggered growth responses, the fungus was not found in the roots of seedlings at the end of the second growing season suggesting a possibility that the observed growth-promoting effect of H. crustuliniforme may be transient. The results suggest that the inoculation of conifer seedlings with ectomycorrhizal fungi could potentially be carried out on a large scale in tree nurseries to benefit postplanting performance in oil sands reclamation sites. However, these practices should take into consideration the differences in responses between the different plant species and fungal strains.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Onwuchekwa</LastName>
<ForeName>Nnenna E</ForeName>
<Initials>NE</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zwiazek</LastName>
<ForeName>Janusz J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Quoreshi</LastName>
<ForeName>Ali</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Khasa</LastName>
<ForeName>Damase P</ForeName>
<Initials>DP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009821">Oils</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009821" MajorTopicYN="Y">Oils</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063245" MajorTopicYN="N">Plant Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="Y">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016019" MajorTopicYN="N">Survival Analysis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>07</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24424508</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-014-0555-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2006 Sep;26(9):1185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 May;15(3):149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2005 May 18;5:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15904497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2000 Mar;107(3):357-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15092982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Jan;135(1):51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Jan;24(1):65-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14652215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1998 Jul;7(7):879-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9691489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2003 Feb;45(2):128-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12545311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Jun;17(4):337-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Dec;22(17 ):1265-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Oct;18(8):393-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Feb;24(2):121-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23942749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Sep;8(5):646-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16755463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2002 Mar-Apr;31(2):648-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11931458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1993 Apr;2(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1996 Mar;20(3):478-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8679209</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001979 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001979 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24424508
   |texte=   Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24424508" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020