Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inclusive fitness in agriculture.

Identifieur interne : 001913 ( Main/Corpus ); précédent : 001912; suivant : 001914

Inclusive fitness in agriculture.

Auteurs : E Toby Kiers ; R Ford Denison

Source :

RBID : pubmed:24686938

English descriptors

Abstract

Trade-offs between individual fitness and the collective performance of crop and below-ground symbiont communities are common in agriculture. Plant competitiveness for light and soil resources is key to individual fitness, but higher investments in stems and roots by a plant community to compete for those resources ultimately reduce crop yields. Similarly, rhizobia and mycorrhizal fungi may increase their individual fitness by diverting resources to their own reproduction, even if they could have benefited collectively by providing their shared crop host with more nitrogen and phosphorus, respectively. Past selection for inclusive fitness (benefits to others, weighted by their relatedness) is unlikely to have favoured community performance over individual fitness. The limited evidence for kin recognition in plants and microbes changes this conclusion only slightly. We therefore argue that there is still ample opportunity for human-imposed selection to improve cooperation among crop plants and their symbionts so that they use limited resources more efficiently. This evolutionarily informed approach will require a better understanding of how interactions among crops, and interactions with their symbionts, affected their inclusive fitness in the past and what that implies for current interactions.

DOI: 10.1098/rstb.2013.0367
PubMed: 24686938
PubMed Central: PMC3982668

Links to Exploration step

pubmed:24686938

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inclusive fitness in agriculture.</title>
<author>
<name sortKey="Kiers, E Toby" sort="Kiers, E Toby" uniqKey="Kiers E" first="E Toby" last="Kiers">E Toby Kiers</name>
<affiliation>
<nlm:affiliation>Institute of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denison, R Ford" sort="Denison, R Ford" uniqKey="Denison R" first="R Ford" last="Denison">R Ford Denison</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24686938</idno>
<idno type="pmid">24686938</idno>
<idno type="doi">10.1098/rstb.2013.0367</idno>
<idno type="pmc">PMC3982668</idno>
<idno type="wicri:Area/Main/Corpus">001913</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001913</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inclusive fitness in agriculture.</title>
<author>
<name sortKey="Kiers, E Toby" sort="Kiers, E Toby" uniqKey="Kiers E" first="E Toby" last="Kiers">E Toby Kiers</name>
<affiliation>
<nlm:affiliation>Institute of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denison, R Ford" sort="Denison, R Ford" uniqKey="Denison R" first="R Ford" last="Denison">R Ford Denison</name>
</author>
</analytic>
<series>
<title level="j">Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title>
<idno type="eISSN">1471-2970</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Evolution (MeSH)</term>
<term>Breeding (methods)</term>
<term>Crops, Agricultural (genetics)</term>
<term>Crops, Agricultural (growth & development)</term>
<term>Crops, Agricultural (microbiology)</term>
<term>Genetic Fitness (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Rhizobiaceae (genetics)</term>
<term>Rhizobiaceae (physiology)</term>
<term>Selection, Genetic (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Crops, Agricultural</term>
<term>Mycorrhizae</term>
<term>Rhizobiaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Crops, Agricultural</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Breeding</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Crops, Agricultural</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Rhizobiaceae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Evolution</term>
<term>Genetic Fitness</term>
<term>Humans</term>
<term>Selection, Genetic</term>
<term>Species Specificity</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trade-offs between individual fitness and the collective performance of crop and below-ground symbiont communities are common in agriculture. Plant competitiveness for light and soil resources is key to individual fitness, but higher investments in stems and roots by a plant community to compete for those resources ultimately reduce crop yields. Similarly, rhizobia and mycorrhizal fungi may increase their individual fitness by diverting resources to their own reproduction, even if they could have benefited collectively by providing their shared crop host with more nitrogen and phosphorus, respectively. Past selection for inclusive fitness (benefits to others, weighted by their relatedness) is unlikely to have favoured community performance over individual fitness. The limited evidence for kin recognition in plants and microbes changes this conclusion only slightly. We therefore argue that there is still ample opportunity for human-imposed selection to improve cooperation among crop plants and their symbionts so that they use limited resources more efficiently. This evolutionarily informed approach will require a better understanding of how interactions among crops, and interactions with their symbionts, affected their inclusive fitness in the past and what that implies for current interactions. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24686938</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1471-2970</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>369</Volume>
<Issue>1642</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</Title>
<ISOAbbreviation>Philos Trans R Soc Lond B Biol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Inclusive fitness in agriculture.</ArticleTitle>
<Pagination>
<MedlinePgn>20130367</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rstb.2013.0367</ELocationID>
<Abstract>
<AbstractText>Trade-offs between individual fitness and the collective performance of crop and below-ground symbiont communities are common in agriculture. Plant competitiveness for light and soil resources is key to individual fitness, but higher investments in stems and roots by a plant community to compete for those resources ultimately reduce crop yields. Similarly, rhizobia and mycorrhizal fungi may increase their individual fitness by diverting resources to their own reproduction, even if they could have benefited collectively by providing their shared crop host with more nitrogen and phosphorus, respectively. Past selection for inclusive fitness (benefits to others, weighted by their relatedness) is unlikely to have favoured community performance over individual fitness. The limited evidence for kin recognition in plants and microbes changes this conclusion only slightly. We therefore argue that there is still ample opportunity for human-imposed selection to improve cooperation among crop plants and their symbionts so that they use limited resources more efficiently. This evolutionarily informed approach will require a better understanding of how interactions among crops, and interactions with their symbionts, affected their inclusive fitness in the past and what that implies for current interactions. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kiers</LastName>
<ForeName>E Toby</ForeName>
<Initials>ET</Initials>
<AffiliationInfo>
<Affiliation>Institute of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Denison</LastName>
<ForeName>R Ford</ForeName>
<Initials>RF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Philos Trans R Soc Lond B Biol Sci</MedlineTA>
<NlmUniqueID>7503623</NlmUniqueID>
<ISSNLinking>0962-8436</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001947" MajorTopicYN="N">Breeding</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018556" MajorTopicYN="N">Crops, Agricultural</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056084" MajorTopicYN="Y">Genetic Fitness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012230" MajorTopicYN="N">Rhizobiaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="Y">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Darwinian agriculture</Keyword>
<Keyword MajorTopicYN="N">Hamilton</Keyword>
<Keyword MajorTopicYN="N">breeding</Keyword>
<Keyword MajorTopicYN="N">cooperation</Keyword>
<Keyword MajorTopicYN="N">symbiosis</Keyword>
<Keyword MajorTopicYN="N">tragedy of the commons</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24686938</ArticleId>
<ArticleId IdType="pii">rstb.2013.0367</ArticleId>
<ArticleId IdType="doi">10.1098/rstb.2013.0367</ArticleId>
<ArticleId IdType="pmc">PMC3982668</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Jul;65(7):2833-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Jun;66(6):2658-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10831453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jan;69(1):616-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biol. 2003 Jun;78(2):145-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12825416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 4;425(6953):78-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12955144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Nov;69(11):6762-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14602638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Feb 19;427(6976):733-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Oct;13(10):3179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 13;433(7022):160-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 4;307(5710):741-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15692054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1989 Oct;55(10):2493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2006 Jan 7;273(1582):77-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16519238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Mar;87(3):535-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1978 Jul;62(1):131-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2007 Jul 29;362(1483):1149-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2007 Aug 22;3(4):435-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17567552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Aug 21;17(16):R661-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17714660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2007 Dec 22;274(1629):3119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17939985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17939995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2008 Feb 23;4(1):67-8; discussion 69-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18089522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Sep;65(3):391-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(4):890-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Jan;12(1):13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2009 Jul;3(7):870-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19360026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2009 Jul 22;276(1667):2531-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19403541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2465-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):424-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):967-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19594691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2009 Nov 12;364(1533):3143-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Apr;175(4):424-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20170364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Feb 26;327(5969):1122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20185722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2010 Jul 7;277(1690):1947-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20200033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jul;187(2):508-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20456052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2010 Jan;3(1):28-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20539778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Jul 13;20(13):1216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20541408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2010;44:271-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20822441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1541-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20837702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Oct 12;20(19):1740-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20869244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Oct 13;5(10):e13324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20967206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):652-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21166810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2011 Sep 7;278(1718):2698-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21270038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2011 Feb 24;11:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21349193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Sep;77(18):6510-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21784911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2011;3:950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2012 Jan-Feb;104(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21933929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Sep 27;21(18):R775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2012 May;179(5):567-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22504540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jun;159(2):789-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):853-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22931497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Nov;11(11):1345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22962278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e45648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23029158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2670-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23362379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Aug;23(6):507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23467773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Mar;197(4):1104-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23495389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 Jul;16(7):835-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23656527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(1):211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Nov;7(11):2137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23823490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2013 Jul 8;23(13):R577-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23845249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2013 Aug;182(2):147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23852350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 25;8(7):e70006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23936133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Feb;8(2):284-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24030596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Mar;23(6):1584-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24050702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2013 Sep;94(9):2019-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24279273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2010 Sep;3(5-6):466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2010 Sep;3(5-6):473-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2010 Sep;3(5-6):547-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 1993 Nov;3(4):749-757</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27759303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1968 Mar;22(1):119-124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2000 Dec;156(6):567-576</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29592542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8985-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Mar;178(6):1646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8626293</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001913 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001913 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24686938
   |texte=   Inclusive fitness in agriculture.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24686938" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020