Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.

Identifieur interne : 001888 ( Main/Corpus ); précédent : 001887; suivant : 001889

Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.

Auteurs : Silvia Perotto ; Marco Rodda ; Alex Benetti ; Fabiano Sillo ; Enrico Ercole ; Michele Rodda ; Mariangela Girlanda ; Claude Murat ; Raffaella Balestrini

Source :

RBID : pubmed:24760407

English descriptors

Abstract

Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.

DOI: 10.1007/s00425-014-2062-x
PubMed: 24760407

Links to Exploration step

pubmed:24760407

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.</title>
<author>
<name sortKey="Perotto, Silvia" sort="Perotto, Silvia" uniqKey="Perotto S" first="Silvia" last="Perotto">Silvia Perotto</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy, silvia.perotto@unito.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodda, Marco" sort="Rodda, Marco" uniqKey="Rodda M" first="Marco" last="Rodda">Marco Rodda</name>
</author>
<author>
<name sortKey="Benetti, Alex" sort="Benetti, Alex" uniqKey="Benetti A" first="Alex" last="Benetti">Alex Benetti</name>
</author>
<author>
<name sortKey="Sillo, Fabiano" sort="Sillo, Fabiano" uniqKey="Sillo F" first="Fabiano" last="Sillo">Fabiano Sillo</name>
</author>
<author>
<name sortKey="Ercole, Enrico" sort="Ercole, Enrico" uniqKey="Ercole E" first="Enrico" last="Ercole">Enrico Ercole</name>
</author>
<author>
<name sortKey="Rodda, Michele" sort="Rodda, Michele" uniqKey="Rodda M" first="Michele" last="Rodda">Michele Rodda</name>
</author>
<author>
<name sortKey="Girlanda, Mariangela" sort="Girlanda, Mariangela" uniqKey="Girlanda M" first="Mariangela" last="Girlanda">Mariangela Girlanda</name>
</author>
<author>
<name sortKey="Murat, Claude" sort="Murat, Claude" uniqKey="Murat C" first="Claude" last="Murat">Claude Murat</name>
</author>
<author>
<name sortKey="Balestrini, Raffaella" sort="Balestrini, Raffaella" uniqKey="Balestrini R" first="Raffaella" last="Balestrini">Raffaella Balestrini</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24760407</idno>
<idno type="pmid">24760407</idno>
<idno type="doi">10.1007/s00425-014-2062-x</idno>
<idno type="wicri:Area/Main/Corpus">001888</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001888</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.</title>
<author>
<name sortKey="Perotto, Silvia" sort="Perotto, Silvia" uniqKey="Perotto S" first="Silvia" last="Perotto">Silvia Perotto</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy, silvia.perotto@unito.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodda, Marco" sort="Rodda, Marco" uniqKey="Rodda M" first="Marco" last="Rodda">Marco Rodda</name>
</author>
<author>
<name sortKey="Benetti, Alex" sort="Benetti, Alex" uniqKey="Benetti A" first="Alex" last="Benetti">Alex Benetti</name>
</author>
<author>
<name sortKey="Sillo, Fabiano" sort="Sillo, Fabiano" uniqKey="Sillo F" first="Fabiano" last="Sillo">Fabiano Sillo</name>
</author>
<author>
<name sortKey="Ercole, Enrico" sort="Ercole, Enrico" uniqKey="Ercole E" first="Enrico" last="Ercole">Enrico Ercole</name>
</author>
<author>
<name sortKey="Rodda, Michele" sort="Rodda, Michele" uniqKey="Rodda M" first="Michele" last="Rodda">Michele Rodda</name>
</author>
<author>
<name sortKey="Girlanda, Mariangela" sort="Girlanda, Mariangela" uniqKey="Girlanda M" first="Mariangela" last="Girlanda">Mariangela Girlanda</name>
</author>
<author>
<name sortKey="Murat, Claude" sort="Murat, Claude" uniqKey="Murat C" first="Claude" last="Murat">Claude Murat</name>
</author>
<author>
<name sortKey="Balestrini, Raffaella" sort="Balestrini, Raffaella" uniqKey="Balestrini R" first="Raffaella" last="Balestrini">Raffaella Balestrini</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation, Fungal (physiology)</term>
<term>Gene Expression Regulation, Plant (physiology)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Orchidaceae (microbiology)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>RNA, Fungal (MeSH)</term>
<term>RNA, Plant (MeSH)</term>
<term>Symbiosis (genetics)</term>
<term>Symbiosis (physiology)</term>
<term>Transcriptome (MeSH)</term>
<term>Up-Regulation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Orchidaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Gene Expression Regulation, Plant</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Phylogeny</term>
<term>RNA, Fungal</term>
<term>RNA, Plant</term>
<term>Transcriptome</term>
<term>Up-Regulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24760407</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>239</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.</ArticleTitle>
<Pagination>
<MedlinePgn>1337-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-014-2062-x</ELocationID>
<Abstract>
<AbstractText>Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Perotto</LastName>
<ForeName>Silvia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy, silvia.perotto@unito.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodda</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Benetti</LastName>
<ForeName>Alex</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sillo</LastName>
<ForeName>Fabiano</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ercole</LastName>
<ForeName>Enrico</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rodda</LastName>
<ForeName>Michele</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Girlanda</LastName>
<ForeName>Mariangela</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Murat</LastName>
<ForeName>Claude</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Balestrini</LastName>
<ForeName>Raffaella</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029595" MajorTopicYN="N">Orchidaceae</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>03</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24760407</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-014-2062-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 1998 Mar;36(5):775-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9526510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2009 Nov;73(11):2452-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19897921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycoconj J. 1994 Aug;11(4):321-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7873928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):604-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 May;111(1):203-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(2):405-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16866946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Nov;224(6):1373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16858580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2106-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 May;22(4):271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21751039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):422-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2010 Mar 18;10:79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20236552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Aug;13(8):2393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15245412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Aug;2(8):687-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Jun;48(6):585-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20884368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jul;13(7):763-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10875337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Mar;25(6):651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Apr;44(4):231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Nov 25;468(7323):527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21107422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Apr;6(4):553-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21422823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2008 Aug 15;420(1):57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18571878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Sep;17(6):475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17582535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Oct 05;3:223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23060892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Nov;16(8):509-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17004063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1998 Aug;1(4):360-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 May;68(10):1442-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17445846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Nov;23(8):597-625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Jun 15;168(9):935-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21459474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(1):176-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2004 Sep;108(Pt 9):1003-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15506013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Jan;13(1):17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 Jul;98(7):1148-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21712419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1576-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Feb;14(2):64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19162524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(2):529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23672230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Jan;24(1):7-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21138374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2023-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22034628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 13;8(8):e72705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23967335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Aug;28(8):1243-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19495769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2011 Jan;27(1):14-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21112661</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001888 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001888 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24760407
   |texte=   Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24760407" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020