Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis.

Identifieur interne : 001864 ( Main/Corpus ); précédent : 001863; suivant : 001865

Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis.

Auteurs : Robert M. Augé ; Heather D. Toler ; Arnold M. Saxton

Source :

RBID : pubmed:24831020

English descriptors

Abstract

Stomata regulate rates of carbon assimilation and water loss. Arbuscular mycorrhizal (AM) symbioses often modify stomatal behavior and therefore play pivotal roles in plant productivity. The size of the AM effect on stomatal conductance to water vapor (g s ) has varied widely, has not always been apparent, and is unpredictable. We conducted a meta-analysis of 460 studies to determine the size of the AM effect under ample watering and drought and to examine how experimental conditions have influenced the AM effect. Across all host and symbiont combinations under all soil moisture conditions, AM plants have shown 24 % higher g s than nonmycorrhizal (NM) controls. The promotion of g s has been over twice as great during moderate drought than under amply watered conditions. The AM influence on g s has been even more pronounced under severe drought, with over four times the promotion observed with ample water. Members of the Claroideoglomeraceae, Glomeraceae, and other AM families stimulated g s by about the same average amount. Colonization by native AM fungi has produced the largest promotion. Among single-AM symbionts, Glomus deserticola, Claroideoglomus etunicatum, and Funneliformis mosseae have had the largest average effects on g s across studies. Dicotyledonous hosts, especially legumes, have been slightly more responsive to AM symbiosis than monocotyledonous hosts, and C3 plants have shown over twice the AM-induced promotion of C4 plants. The extent of root colonization is important, with heavily colonized plants showing ×10 the g s promotion of lightly colonized plants. AM promotion of g s has been larger in growth chambers and in the field than in greenhouse studies, almost ×3 as large when plants were grown under high light than low light, and ×2.5 as large in purely mineral soils than in soils having an organic component. When AM plants have been compared with NM controls given NM pot culture, they have shown only half the promotion of g s as NM plants not given anything at inoculation to control for associated soil organisms. The AM effect has been much greater when AM plants were larger or had more phosphorus than NM controls. These findings should assist in further investigations of predictions and mechanisms of the AM influence on host g s .

DOI: 10.1007/s00572-014-0585-4
PubMed: 24831020

Links to Exploration step

pubmed:24831020

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis.</title>
<author>
<name sortKey="Auge, Robert M" sort="Auge, Robert M" uniqKey="Auge R" first="Robert M" last="Augé">Robert M. Augé</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN, 37996-4561, USA, auge@utk.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Toler, Heather D" sort="Toler, Heather D" uniqKey="Toler H" first="Heather D" last="Toler">Heather D. Toler</name>
</author>
<author>
<name sortKey="Saxton, Arnold M" sort="Saxton, Arnold M" uniqKey="Saxton A" first="Arnold M" last="Saxton">Arnold M. Saxton</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:24831020</idno>
<idno type="pmid">24831020</idno>
<idno type="doi">10.1007/s00572-014-0585-4</idno>
<idno type="wicri:Area/Main/Corpus">001864</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001864</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis.</title>
<author>
<name sortKey="Auge, Robert M" sort="Auge, Robert M" uniqKey="Auge R" first="Robert M" last="Augé">Robert M. Augé</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN, 37996-4561, USA, auge@utk.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Toler, Heather D" sort="Toler, Heather D" uniqKey="Toler H" first="Heather D" last="Toler">Heather D. Toler</name>
</author>
<author>
<name sortKey="Saxton, Arnold M" sort="Saxton, Arnold M" uniqKey="Saxton A" first="Arnold M" last="Saxton">Arnold M. Saxton</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phosphorus (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Stomata (metabolism)</term>
<term>Symbiosis (MeSH)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphorus</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Stomata</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stomata regulate rates of carbon assimilation and water loss. Arbuscular mycorrhizal (AM) symbioses often modify stomatal behavior and therefore play pivotal roles in plant productivity. The size of the AM effect on stomatal conductance to water vapor (g s ) has varied widely, has not always been apparent, and is unpredictable. We conducted a meta-analysis of 460 studies to determine the size of the AM effect under ample watering and drought and to examine how experimental conditions have influenced the AM effect. Across all host and symbiont combinations under all soil moisture conditions, AM plants have shown 24 % higher g s than nonmycorrhizal (NM) controls. The promotion of g s has been over twice as great during moderate drought than under amply watered conditions. The AM influence on g s has been even more pronounced under severe drought, with over four times the promotion observed with ample water. Members of the Claroideoglomeraceae, Glomeraceae, and other AM families stimulated g s by about the same average amount. Colonization by native AM fungi has produced the largest promotion. Among single-AM symbionts, Glomus deserticola, Claroideoglomus etunicatum, and Funneliformis mosseae have had the largest average effects on g s across studies. Dicotyledonous hosts, especially legumes, have been slightly more responsive to AM symbiosis than monocotyledonous hosts, and C3 plants have shown over twice the AM-induced promotion of C4 plants. The extent of root colonization is important, with heavily colonized plants showing ×10 the g s promotion of lightly colonized plants. AM promotion of g s has been larger in growth chambers and in the field than in greenhouse studies, almost ×3 as large when plants were grown under high light than low light, and ×2.5 as large in purely mineral soils than in soils having an organic component. When AM plants have been compared with NM controls given NM pot culture, they have shown only half the promotion of g s as NM plants not given anything at inoculation to control for associated soil organisms. The AM effect has been much greater when AM plants were larger or had more phosphorus than NM controls. These findings should assist in further investigations of predictions and mechanisms of the AM influence on host g s .</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24831020</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>13-24</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-014-0585-4</ELocationID>
<Abstract>
<AbstractText>Stomata regulate rates of carbon assimilation and water loss. Arbuscular mycorrhizal (AM) symbioses often modify stomatal behavior and therefore play pivotal roles in plant productivity. The size of the AM effect on stomatal conductance to water vapor (g s ) has varied widely, has not always been apparent, and is unpredictable. We conducted a meta-analysis of 460 studies to determine the size of the AM effect under ample watering and drought and to examine how experimental conditions have influenced the AM effect. Across all host and symbiont combinations under all soil moisture conditions, AM plants have shown 24 % higher g s than nonmycorrhizal (NM) controls. The promotion of g s has been over twice as great during moderate drought than under amply watered conditions. The AM influence on g s has been even more pronounced under severe drought, with over four times the promotion observed with ample water. Members of the Claroideoglomeraceae, Glomeraceae, and other AM families stimulated g s by about the same average amount. Colonization by native AM fungi has produced the largest promotion. Among single-AM symbionts, Glomus deserticola, Claroideoglomus etunicatum, and Funneliformis mosseae have had the largest average effects on g s across studies. Dicotyledonous hosts, especially legumes, have been slightly more responsive to AM symbiosis than monocotyledonous hosts, and C3 plants have shown over twice the AM-induced promotion of C4 plants. The extent of root colonization is important, with heavily colonized plants showing ×10 the g s promotion of lightly colonized plants. AM promotion of g s has been larger in growth chambers and in the field than in greenhouse studies, almost ×3 as large when plants were grown under high light than low light, and ×2.5 as large in purely mineral soils than in soils having an organic component. When AM plants have been compared with NM controls given NM pot culture, they have shown only half the promotion of g s as NM plants not given anything at inoculation to control for associated soil organisms. The AM effect has been much greater when AM plants were larger or had more phosphorus than NM controls. These findings should assist in further investigations of predictions and mechanisms of the AM influence on host g s .</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Augé</LastName>
<ForeName>Robert M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN, 37996-4561, USA, auge@utk.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Toler</LastName>
<ForeName>Heather D</ForeName>
<Initials>HD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saxton</LastName>
<ForeName>Arnold M</ForeName>
<Initials>AM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D017418">Meta-Analysis</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24831020</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-014-0585-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2013 Oct;23(7):515-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrics. 1994 Dec;50(4):1088-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7786990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 May;12(5):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19320689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Apr;22(3):227-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21710352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Feb;61(2):456-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16534929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2002 Feb;25(2):195-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Mar;36(3):697-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22943419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2004 Apr;14(2):85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12743838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 Mar;16(3):399-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23237105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Mar;13(3):394-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Jun;169(2):441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22159919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2013 Apr;65(3):671-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23250115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Oct;164(10):1289-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1981 Nov;68(5):1170-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Public Opin Q. 1983 Winter;46(4):560-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10260432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Oct;76(2):392-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Jun;169(2):293-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22083284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Feb;23(2):119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22983627</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001864 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001864 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24831020
   |texte=   Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24831020" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020