Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatial structuring of arbuscular mycorrhizal communities in benchmark and modified temperate eucalypt woodlands.

Identifieur interne : 001853 ( Main/Corpus ); précédent : 001852; suivant : 001854

Spatial structuring of arbuscular mycorrhizal communities in benchmark and modified temperate eucalypt woodlands.

Auteurs : Suzanne M. Prober ; A. Bissett ; C. Walker ; G. Wiehl ; S. Mcintyre ; M. Tibbett

Source :

RBID : pubmed:24879562

English descriptors

Abstract

Arbuscular mycorrhizal fungi (AMF) are crucial to the functioning of the plant-soil system, but little is known about the spatial structuring of AMF communities across landscapes modified by agriculture. AMF community composition was characterized across four sites in the highly cleared south-western Australian wheatbelt that were originally dominated by forb-rich eucalypt woodlands. Environmentally induced spatial structuring in AMF composition was examined at four scales: the regional scale associated with location, the site scale associated with past management (benchmark woodlands with no agricultural management history, livestock grazing, recent revegetation), the patch scale associated with trees and canopy gaps, and the fine scale associated with the herbaceous plant species beneath which soils were sourced. Field-collected soils were cultured in trap pots; then, AMF composition was determined by identifying spores and through ITS1 sequencing. Structuring was strongest at site scales, where composition was strongly related to prior management and associated changes in soil phosphorus. The two fields were dominated by the genera Funneliformis and Paraglomus, with little convergence back to woodland composition after revegetation. The two benchmark woodlands were characterized by Ambispora gerdemannii and taxa from Gigasporaceae. Their AMF communities were strongly structured at patch scales associated with trees and gaps, in turn most strongly related to soil N. By contrast, there were few patterns at fine scales related to different herbaceous plant species, or at regional scales associated with the 175 km distance between benchmark woodlands. Important areas for future investigation are to identify the circumstances in which recolonization by woodland AMF may be limited by fungal propagule availability, reduced plant diversity and/or altered chemistry in agricultural soils.

DOI: 10.1007/s00572-014-0587-2
PubMed: 24879562

Links to Exploration step

pubmed:24879562

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spatial structuring of arbuscular mycorrhizal communities in benchmark and modified temperate eucalypt woodlands.</title>
<author>
<name sortKey="Prober, Suzanne M" sort="Prober, Suzanne M" uniqKey="Prober S" first="Suzanne M" last="Prober">Suzanne M. Prober</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystem Sciences, Private Bag 5, Wembley, Perth, WA, Australia, 6913, suzanne.prober@csiro.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bissett, A" sort="Bissett, A" uniqKey="Bissett A" first="A" last="Bissett">A. Bissett</name>
</author>
<author>
<name sortKey="Walker, C" sort="Walker, C" uniqKey="Walker C" first="C" last="Walker">C. Walker</name>
</author>
<author>
<name sortKey="Wiehl, G" sort="Wiehl, G" uniqKey="Wiehl G" first="G" last="Wiehl">G. Wiehl</name>
</author>
<author>
<name sortKey="Mcintyre, S" sort="Mcintyre, S" uniqKey="Mcintyre S" first="S" last="Mcintyre">S. Mcintyre</name>
</author>
<author>
<name sortKey="Tibbett, M" sort="Tibbett, M" uniqKey="Tibbett M" first="M" last="Tibbett">M. Tibbett</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:24879562</idno>
<idno type="pmid">24879562</idno>
<idno type="doi">10.1007/s00572-014-0587-2</idno>
<idno type="wicri:Area/Main/Corpus">001853</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001853</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Spatial structuring of arbuscular mycorrhizal communities in benchmark and modified temperate eucalypt woodlands.</title>
<author>
<name sortKey="Prober, Suzanne M" sort="Prober, Suzanne M" uniqKey="Prober S" first="Suzanne M" last="Prober">Suzanne M. Prober</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystem Sciences, Private Bag 5, Wembley, Perth, WA, Australia, 6913, suzanne.prober@csiro.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bissett, A" sort="Bissett, A" uniqKey="Bissett A" first="A" last="Bissett">A. Bissett</name>
</author>
<author>
<name sortKey="Walker, C" sort="Walker, C" uniqKey="Walker C" first="C" last="Walker">C. Walker</name>
</author>
<author>
<name sortKey="Wiehl, G" sort="Wiehl, G" uniqKey="Wiehl G" first="G" last="Wiehl">G. Wiehl</name>
</author>
<author>
<name sortKey="Mcintyre, S" sort="Mcintyre, S" uniqKey="Mcintyre S" first="S" last="Mcintyre">S. Mcintyre</name>
</author>
<author>
<name sortKey="Tibbett, M" sort="Tibbett, M" uniqKey="Tibbett M" first="M" last="Tibbett">M. Tibbett</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (MeSH)</term>
<term>Biodiversity (MeSH)</term>
<term>Conservation of Natural Resources (MeSH)</term>
<term>Forests (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Trees (microbiology)</term>
<term>Western Australia (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Western Australia</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agriculture</term>
<term>Biodiversity</term>
<term>Conservation of Natural Resources</term>
<term>Forests</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal fungi (AMF) are crucial to the functioning of the plant-soil system, but little is known about the spatial structuring of AMF communities across landscapes modified by agriculture. AMF community composition was characterized across four sites in the highly cleared south-western Australian wheatbelt that were originally dominated by forb-rich eucalypt woodlands. Environmentally induced spatial structuring in AMF composition was examined at four scales: the regional scale associated with location, the site scale associated with past management (benchmark woodlands with no agricultural management history, livestock grazing, recent revegetation), the patch scale associated with trees and canopy gaps, and the fine scale associated with the herbaceous plant species beneath which soils were sourced. Field-collected soils were cultured in trap pots; then, AMF composition was determined by identifying spores and through ITS1 sequencing. Structuring was strongest at site scales, where composition was strongly related to prior management and associated changes in soil phosphorus. The two fields were dominated by the genera Funneliformis and Paraglomus, with little convergence back to woodland composition after revegetation. The two benchmark woodlands were characterized by Ambispora gerdemannii and taxa from Gigasporaceae. Their AMF communities were strongly structured at patch scales associated with trees and gaps, in turn most strongly related to soil N. By contrast, there were few patterns at fine scales related to different herbaceous plant species, or at regional scales associated with the 175 km distance between benchmark woodlands. Important areas for future investigation are to identify the circumstances in which recolonization by woodland AMF may be limited by fungal propagule availability, reduced plant diversity and/or altered chemistry in agricultural soils.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24879562</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Spatial structuring of arbuscular mycorrhizal communities in benchmark and modified temperate eucalypt woodlands.</ArticleTitle>
<Pagination>
<MedlinePgn>41-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-014-0587-2</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal fungi (AMF) are crucial to the functioning of the plant-soil system, but little is known about the spatial structuring of AMF communities across landscapes modified by agriculture. AMF community composition was characterized across four sites in the highly cleared south-western Australian wheatbelt that were originally dominated by forb-rich eucalypt woodlands. Environmentally induced spatial structuring in AMF composition was examined at four scales: the regional scale associated with location, the site scale associated with past management (benchmark woodlands with no agricultural management history, livestock grazing, recent revegetation), the patch scale associated with trees and canopy gaps, and the fine scale associated with the herbaceous plant species beneath which soils were sourced. Field-collected soils were cultured in trap pots; then, AMF composition was determined by identifying spores and through ITS1 sequencing. Structuring was strongest at site scales, where composition was strongly related to prior management and associated changes in soil phosphorus. The two fields were dominated by the genera Funneliformis and Paraglomus, with little convergence back to woodland composition after revegetation. The two benchmark woodlands were characterized by Ambispora gerdemannii and taxa from Gigasporaceae. Their AMF communities were strongly structured at patch scales associated with trees and gaps, in turn most strongly related to soil N. By contrast, there were few patterns at fine scales related to different herbaceous plant species, or at regional scales associated with the 175 km distance between benchmark woodlands. Important areas for future investigation are to identify the circumstances in which recolonization by woodland AMF may be limited by fungal propagule availability, reduced plant diversity and/or altered chemistry in agricultural soils.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Prober</LastName>
<ForeName>Suzanne M</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Ecosystem Sciences, Private Bag 5, Wembley, Perth, WA, Australia, 6913, suzanne.prober@csiro.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bissett</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Walker</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wiehl</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McIntyre</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tibbett</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="Y">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003247" MajorTopicYN="Y">Conservation of Natural Resources</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="Y">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014904" MajorTopicYN="N" Type="Geographic">Western Australia</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24879562</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-014-0587-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011;6(8):e23333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21853113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 May;64(2):260-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Nov;25(11):670-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20888063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Feb;24(2):95-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23912811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Jan 28;12:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21276213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 May;22(9):2573-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23458035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Feb;185(3):631-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19968797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(1):212-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19368665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 9;432(7018):747-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15592411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Jan;24(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23715868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(2):366-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21058952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(1):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2008 Jul 24;8:125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18652685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Oct;78(1):70-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21470254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e27310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Feb;23(2):95-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Apr;21(3):183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20552233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Sep;18(9):484-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23756036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Mar 17;6(3):e17693</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21437280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Source Code Biol Med. 2009 Jan 15;4:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19146660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2093-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):8228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Apr;24(3):219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24141906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Sep;21(9):501-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16815589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2465-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Nov;22(21):5271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001853 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001853 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24879562
   |texte=   Spatial structuring of arbuscular mycorrhizal communities in benchmark and modified temperate eucalypt woodlands.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24879562" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020