Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal fungi play a role in protecting roots of Sophora viciifolia Hance. from Pb damage associated with increased phytochelatin synthase gene expression.

Identifieur interne : 001821 ( Main/Corpus ); précédent : 001820; suivant : 001822

Arbuscular mycorrhizal fungi play a role in protecting roots of Sophora viciifolia Hance. from Pb damage associated with increased phytochelatin synthase gene expression.

Auteurs : Zhouying Xu ; Yihui Ban ; Zhen Li ; Hui Chen ; Ren Yang ; Ming Tang

Source :

RBID : pubmed:24958536

English descriptors

Abstract

Understanding the influence of arbuscular mycorrhizal (AM) fungi on the expressions of the dominant plant-related genes under heavy metal (HM) stress is important for developing strategies to reclaim polluted sites. In this study, we cloned full-length cDNAs of phytochelatin synthase gene (PCS1) and Actin of Sophora viciifolia Hance., a predominant plant in Qiandongshan lead and zinc mine, by rapid amplification of cDNA ends. Consequently, we studied the response of SvPCS1 to Funneliformis mosseae inoculation under lead stress (0, 50, and 200 μM Pb(NO3)2) at different durations (1, 3, and 7 days) using quantitative reverse-transcription polymerase chain-reaction (qRT-PCR) technique. The Pb concentrations and chlorophyll fluorescence parameters were also measured to assay Pb toxicity to Sophora viciifolia. We found that Pb concentrations in roots increased with increasing Pb application and the durations; the F v /F m , F v /F o , qP, and Y(II) decreased; NPQ rose with increasing Pb concentrations; mycorrhizal symbiosis alleviated the Pb toxicity to plants; and SvPCS1 was constitutively expressed in the roots. It was also found that F. mosseae inoculation could promote the expression of SvPCS1 with the concentration ≤ 200 μM at the exposure time shorter than 7 days.

DOI: 10.1007/s11356-014-3209-9
PubMed: 24958536

Links to Exploration step

pubmed:24958536

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal fungi play a role in protecting roots of Sophora viciifolia Hance. from Pb damage associated with increased phytochelatin synthase gene expression.</title>
<author>
<name sortKey="Xu, Zhouying" sort="Xu, Zhouying" uniqKey="Xu Z" first="Zhouying" last="Xu">Zhouying Xu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ban, Yihui" sort="Ban, Yihui" uniqKey="Ban Y" first="Yihui" last="Ban">Yihui Ban</name>
</author>
<author>
<name sortKey="Li, Zhen" sort="Li, Zhen" uniqKey="Li Z" first="Zhen" last="Li">Zhen Li</name>
</author>
<author>
<name sortKey="Chen, Hui" sort="Chen, Hui" uniqKey="Chen H" first="Hui" last="Chen">Hui Chen</name>
</author>
<author>
<name sortKey="Yang, Ren" sort="Yang, Ren" uniqKey="Yang R" first="Ren" last="Yang">Ren Yang</name>
</author>
<author>
<name sortKey="Tang, Ming" sort="Tang, Ming" uniqKey="Tang M" first="Ming" last="Tang">Ming Tang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24958536</idno>
<idno type="pmid">24958536</idno>
<idno type="doi">10.1007/s11356-014-3209-9</idno>
<idno type="wicri:Area/Main/Corpus">001821</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001821</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal fungi play a role in protecting roots of Sophora viciifolia Hance. from Pb damage associated with increased phytochelatin synthase gene expression.</title>
<author>
<name sortKey="Xu, Zhouying" sort="Xu, Zhouying" uniqKey="Xu Z" first="Zhouying" last="Xu">Zhouying Xu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ban, Yihui" sort="Ban, Yihui" uniqKey="Ban Y" first="Yihui" last="Ban">Yihui Ban</name>
</author>
<author>
<name sortKey="Li, Zhen" sort="Li, Zhen" uniqKey="Li Z" first="Zhen" last="Li">Zhen Li</name>
</author>
<author>
<name sortKey="Chen, Hui" sort="Chen, Hui" uniqKey="Chen H" first="Hui" last="Chen">Hui Chen</name>
</author>
<author>
<name sortKey="Yang, Ren" sort="Yang, Ren" uniqKey="Yang R" first="Ren" last="Yang">Ren Yang</name>
</author>
<author>
<name sortKey="Tang, Ming" sort="Tang, Ming" uniqKey="Tang M" first="Ming" last="Tang">Ming Tang</name>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aminoacyltransferases (genetics)</term>
<term>Chlorophyll (metabolism)</term>
<term>DNA, Complementary (genetics)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Glomeromycota (physiology)</term>
<term>Lead (toxicity)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Soil Pollutants (toxicity)</term>
<term>Sophora (drug effects)</term>
<term>Sophora (microbiology)</term>
<term>Sophora (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aminoacyltransferases</term>
<term>DNA, Complementary</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chlorophyll</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Plant Roots</term>
<term>Sophora</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Sophora</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Sophora</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Lead</term>
<term>Soil Pollutants</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding the influence of arbuscular mycorrhizal (AM) fungi on the expressions of the dominant plant-related genes under heavy metal (HM) stress is important for developing strategies to reclaim polluted sites. In this study, we cloned full-length cDNAs of phytochelatin synthase gene (PCS1) and Actin of Sophora viciifolia Hance., a predominant plant in Qiandongshan lead and zinc mine, by rapid amplification of cDNA ends. Consequently, we studied the response of SvPCS1 to Funneliformis mosseae inoculation under lead stress (0, 50, and 200 μM Pb(NO3)2) at different durations (1, 3, and 7 days) using quantitative reverse-transcription polymerase chain-reaction (qRT-PCR) technique. The Pb concentrations and chlorophyll fluorescence parameters were also measured to assay Pb toxicity to Sophora viciifolia. We found that Pb concentrations in roots increased with increasing Pb application and the durations; the F v /F m , F v /F o , qP, and Y(II) decreased; NPQ rose with increasing Pb concentrations; mycorrhizal symbiosis alleviated the Pb toxicity to plants; and SvPCS1 was constitutively expressed in the roots. It was also found that F. mosseae inoculation could promote the expression of SvPCS1 with the concentration ≤ 200 μM at the exposure time shorter than 7 days.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">24958536</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal fungi play a role in protecting roots of Sophora viciifolia Hance. from Pb damage associated with increased phytochelatin synthase gene expression.</ArticleTitle>
<Pagination>
<MedlinePgn>12671-83</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-014-3209-9</ELocationID>
<Abstract>
<AbstractText>Understanding the influence of arbuscular mycorrhizal (AM) fungi on the expressions of the dominant plant-related genes under heavy metal (HM) stress is important for developing strategies to reclaim polluted sites. In this study, we cloned full-length cDNAs of phytochelatin synthase gene (PCS1) and Actin of Sophora viciifolia Hance., a predominant plant in Qiandongshan lead and zinc mine, by rapid amplification of cDNA ends. Consequently, we studied the response of SvPCS1 to Funneliformis mosseae inoculation under lead stress (0, 50, and 200 μM Pb(NO3)2) at different durations (1, 3, and 7 days) using quantitative reverse-transcription polymerase chain-reaction (qRT-PCR) technique. The Pb concentrations and chlorophyll fluorescence parameters were also measured to assay Pb toxicity to Sophora viciifolia. We found that Pb concentrations in roots increased with increasing Pb application and the durations; the F v /F m , F v /F o , qP, and Y(II) decreased; NPQ rose with increasing Pb concentrations; mycorrhizal symbiosis alleviated the Pb toxicity to plants; and SvPCS1 was constitutively expressed in the roots. It was also found that F. mosseae inoculation could promote the expression of SvPCS1 with the concentration ≤ 200 μM at the exposure time shorter than 7 days.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Zhouying</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ban</LastName>
<ForeName>Yihui</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Zhen</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Ren</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2P299V784P</RegistryNumber>
<NameOfSubstance UI="D007854">Lead</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.-</RegistryNumber>
<NameOfSubstance UI="D019881">Aminoacyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.15</RegistryNumber>
<NameOfSubstance UI="C093784">glutathione gamma-glutamylcysteinyltransferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019881" MajorTopicYN="N">Aminoacyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007854" MajorTopicYN="N">Lead</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029909" MajorTopicYN="N">Sophora</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>06</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24958536</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-014-3209-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Plant Physiol. 2006 Feb;163(3):319-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16384624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1986 Jan;10(1-2):51-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24435276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2005 Jul;60(5):665-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15963805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2002;119(1):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12125724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2008 Jun 15;154(1-3):914-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18162296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16594069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2006 Mar;140(1):124-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16150522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2012 Apr 13;3:91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22509169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 1997 Jun;34(11):2467-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9192470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Nov 8;230(4726):674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17797291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2106-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1993 May;10(3):512-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8336541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Feb;73(3):442-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23051146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2012 Oct 1;435-436:453-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22885351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aquat Toxicol. 2009 Mar 9;91(4):320-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19110323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):8066-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 May;101(9):3025-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Sep;100(1):100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16652930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Sci. 2008 Feb;24(2):277-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18270423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Jun;162(6):634-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16008086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aquat Toxicol. 2010 Aug 1;99(1):86-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Feb;138(2):226-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20015123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(371):1177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11971928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 Nov 7;179(1):21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8955625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1990;59:61-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2197985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2005 Jun;60(1):97-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15910908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Sep;18(6-7):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18584217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2011 Feb 28;186(2-3):1520-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21216094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Dec;16(1):51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16136340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2002 Jun;15(2):145-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12046922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Environ Contam Toxicol. 2011;213:113-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21541849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2010 May 15;177(1-3):465-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20061082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2013;2013:904769</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23781509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Feb;145(3):691-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:19-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2012 Nov;89(9):1056-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Feb;69(3):510-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21978245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2023-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22034628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jul;123(3):825-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:159-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 22;414(6862):462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(3):529-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2013 Aug;92(10):1367-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23755987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1991 May;184(2):226-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24194074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 May;60(2):153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12009318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2003;10(3):192-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12846382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2012 Sep;168:121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Apr;16(4):306-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12744459</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001821 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001821 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24958536
   |texte=   Arbuscular mycorrhizal fungi play a role in protecting roots of Sophora viciifolia Hance. from Pb damage associated with increased phytochelatin synthase gene expression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24958536" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020