Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bacterial degradation of Aroclor 1242 in the mycorrhizosphere soils of zucchini (Cucurbita pepo L.) inoculated with arbuscular mycorrhizal fungi.

Identifieur interne : 001819 ( Main/Corpus ); précédent : 001818; suivant : 001820

Bacterial degradation of Aroclor 1242 in the mycorrhizosphere soils of zucchini (Cucurbita pepo L.) inoculated with arbuscular mycorrhizal fungi.

Auteurs : Hua Qin ; Philip C. Brookes ; Jianming Xu ; Youzhi Feng

Source :

RBID : pubmed:24969432

English descriptors

Abstract

A greenhouse experiment was conducted to investigate the effects of zucchini (Cucurbita pepo L.), inoculated with the arbuscular mycorrhizal (AM) species Acaulospora laevis, Glomus caledonium, and Glomus mosseae, on the soil bacterial community responsible for Aroclor 1242 dissipation. The dissipation rates of Aroclor 1242 and soil bacteria abundance were much higher with the A. laevis and G. mosseae treatments compared to the non-mycorrhizal control. The biphenyl dioxygenase (bphA) and Rhodococcus-like 2,3-dihydroxybiphenyl dioxygenase (bphC) genes were more abundant in AM inoculated soils, suggesting that the bphA and Rhodococcus-like bphC pathways play an important role in Aroclor 1242 dissipation in the mycorrhizosphere. The soil bacterial communities were dominated by classes Betaproteobacteria and Actinobacteria, while the relative proportion of Actinobacteria was significantly (F=2.288, P<0.05) correlated with the PCB congener profile in bulk soil. Our results showed that AM fungi could enhance PCB dissipation by stimulating bph gene abundance and the growth of specific bacterial groups.

DOI: 10.1007/s11356-014-3231-y
PubMed: 24969432

Links to Exploration step

pubmed:24969432

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bacterial degradation of Aroclor 1242 in the mycorrhizosphere soils of zucchini (Cucurbita pepo L.) inoculated with arbuscular mycorrhizal fungi.</title>
<author>
<name sortKey="Qin, Hua" sort="Qin, Hua" uniqKey="Qin H" first="Hua" last="Qin">Hua Qin</name>
<affiliation>
<nlm:affiliation>Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brookes, Philip C" sort="Brookes, Philip C" uniqKey="Brookes P" first="Philip C" last="Brookes">Philip C. Brookes</name>
</author>
<author>
<name sortKey="Xu, Jianming" sort="Xu, Jianming" uniqKey="Xu J" first="Jianming" last="Xu">Jianming Xu</name>
</author>
<author>
<name sortKey="Feng, Youzhi" sort="Feng, Youzhi" uniqKey="Feng Y" first="Youzhi" last="Feng">Youzhi Feng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24969432</idno>
<idno type="pmid">24969432</idno>
<idno type="doi">10.1007/s11356-014-3231-y</idno>
<idno type="wicri:Area/Main/Corpus">001819</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001819</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bacterial degradation of Aroclor 1242 in the mycorrhizosphere soils of zucchini (Cucurbita pepo L.) inoculated with arbuscular mycorrhizal fungi.</title>
<author>
<name sortKey="Qin, Hua" sort="Qin, Hua" uniqKey="Qin H" first="Hua" last="Qin">Hua Qin</name>
<affiliation>
<nlm:affiliation>Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brookes, Philip C" sort="Brookes, Philip C" uniqKey="Brookes P" first="Philip C" last="Brookes">Philip C. Brookes</name>
</author>
<author>
<name sortKey="Xu, Jianming" sort="Xu, Jianming" uniqKey="Xu J" first="Jianming" last="Xu">Jianming Xu</name>
</author>
<author>
<name sortKey="Feng, Youzhi" sort="Feng, Youzhi" uniqKey="Feng Y" first="Youzhi" last="Feng">Youzhi Feng</name>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actinobacteria (metabolism)</term>
<term>Aroclors (metabolism)</term>
<term>Betaproteobacteria (metabolism)</term>
<term>Cucurbita (MeSH)</term>
<term>Dioxygenases (genetics)</term>
<term>Dioxygenases (metabolism)</term>
<term>Glomeromycota (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Dioxygenases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aroclors</term>
<term>Dioxygenases</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Actinobacteria</term>
<term>Betaproteobacteria</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cucurbita</term>
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A greenhouse experiment was conducted to investigate the effects of zucchini (Cucurbita pepo L.), inoculated with the arbuscular mycorrhizal (AM) species Acaulospora laevis, Glomus caledonium, and Glomus mosseae, on the soil bacterial community responsible for Aroclor 1242 dissipation. The dissipation rates of Aroclor 1242 and soil bacteria abundance were much higher with the A. laevis and G. mosseae treatments compared to the non-mycorrhizal control. The biphenyl dioxygenase (bphA) and Rhodococcus-like 2,3-dihydroxybiphenyl dioxygenase (bphC) genes were more abundant in AM inoculated soils, suggesting that the bphA and Rhodococcus-like bphC pathways play an important role in Aroclor 1242 dissipation in the mycorrhizosphere. The soil bacterial communities were dominated by classes Betaproteobacteria and Actinobacteria, while the relative proportion of Actinobacteria was significantly (F=2.288, P<0.05) correlated with the PCB congener profile in bulk soil. Our results showed that AM fungi could enhance PCB dissipation by stimulating bph gene abundance and the growth of specific bacterial groups.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">24969432</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Bacterial degradation of Aroclor 1242 in the mycorrhizosphere soils of zucchini (Cucurbita pepo L.) inoculated with arbuscular mycorrhizal fungi.</ArticleTitle>
<Pagination>
<MedlinePgn>12790-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-014-3231-y</ELocationID>
<Abstract>
<AbstractText>A greenhouse experiment was conducted to investigate the effects of zucchini (Cucurbita pepo L.), inoculated with the arbuscular mycorrhizal (AM) species Acaulospora laevis, Glomus caledonium, and Glomus mosseae, on the soil bacterial community responsible for Aroclor 1242 dissipation. The dissipation rates of Aroclor 1242 and soil bacteria abundance were much higher with the A. laevis and G. mosseae treatments compared to the non-mycorrhizal control. The biphenyl dioxygenase (bphA) and Rhodococcus-like 2,3-dihydroxybiphenyl dioxygenase (bphC) genes were more abundant in AM inoculated soils, suggesting that the bphA and Rhodococcus-like bphC pathways play an important role in Aroclor 1242 dissipation in the mycorrhizosphere. The soil bacterial communities were dominated by classes Betaproteobacteria and Actinobacteria, while the relative proportion of Actinobacteria was significantly (F=2.288, P<0.05) correlated with the PCB congener profile in bulk soil. Our results showed that AM fungi could enhance PCB dissipation by stimulating bph gene abundance and the growth of specific bacterial groups.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Qin</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brookes</LastName>
<ForeName>Philip C</ForeName>
<Initials>PC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Jianming</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Youzhi</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001140">Aroclors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53469-21-9</RegistryNumber>
<NameOfSubstance UI="C027423">aroclor 1242</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.11.-</RegistryNumber>
<NameOfSubstance UI="D049308">Dioxygenases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D039903" MajorTopicYN="N">Actinobacteria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001140" MajorTopicYN="N">Aroclors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020562" MajorTopicYN="N">Betaproteobacteria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028464" MajorTopicYN="N">Cucurbita</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049308" MajorTopicYN="N">Dioxygenases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="Y">Glomeromycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>04</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24969432</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-014-3231-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2010 Mar 10;5(3):e9490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20224823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2004 Apr 1;48(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2002 Jun;5(3):246-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12057677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(19):6224-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 Sep;7(9):668-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2011 Mar;159(3):749-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21183262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Jan;10(1):31-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2010 Jul;12(5):516-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21166292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Apr 1;36(7):1579-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11999069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2007 Aug;61(2):295-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2009 Dec 1;107(6):1883-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20426769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2013 Apr 16;47(8):3807-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23463900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2008 Jul-Aug;10:251-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19260211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Nov;8(11):1867-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17014487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2011 Nov 15;195:254-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21885188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):146-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Jan;254(1):34-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16451176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Nov;70(2):149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19663919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2007 Aug;9(8):1890-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10583-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2000 Oct 3;256(1-2):223-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11054551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Apr;80(1):236-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22224699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Jun;10(6):1557-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18318716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Jun;15(6):1870-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23360621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Sep;61(9):3353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Apr;72(4):2331-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jun;77(11):3888-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21498748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2008 Sep;155(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18035460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2014 Jan;184:306-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24077568</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001819 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001819 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24969432
   |texte=   Bacterial degradation of Aroclor 1242 in the mycorrhizosphere soils of zucchini (Cucurbita pepo L.) inoculated with arbuscular mycorrhizal fungi.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24969432" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020