Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress.

Identifieur interne : 001778 ( Main/Corpus ); précédent : 001777; suivant : 001779

Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress.

Auteurs : Ying-Ning Zou ; Yong-Ming Huang ; Qiang-Sheng Wu ; Xin-Hua He

Source :

RBID : pubmed:25085218

English descriptors

Abstract

Mechanisms of arbuscular mycorrhiza (AM)-induced lower oxidative burst of host plants under drought stress (DS) are not elucidated. A noninvasive microtest technology (NMT) was used to investigate the effects of Funneliformis mosseae on net fluxes of root hydrogen peroxide (H2O2) and calcium ions (Ca2+) in 5-month-old Poncirus trifoliata, in combination with catalase (CAT) and superoxide dismutase (SOD) activities as well as tissue superoxide radical (O2•-) and H2O2 concentrations under DS and well-watered (WW) conditions. A 2-month DS (55% maximum water holding capacity of growth substrates) significantly inhibited AM fungal root colonization, while AM symbiosis significantly increased plant biomass production, irrespective of water status. F. mosseae inoculation generally increased SOD and CAT activity but decreased O2•- and H2O2 concentrations in leaves and roots under WW and DS. Compared with non-AM seedlings, roots of AM seedlings had significantly higher net H2O2 effluxes and net Ca2+ influxes, especially in the meristem zone, but lower net H2O2 efflux in the elongation zone. Net Ca2+ influxes into roots were significantly positively correlated with root net H2O2 effluxes but negatively with root H2O2 concentrations. Results from this study suggest that AM-induced lower oxidative burst is related with higher antioxidant enzyme activities, root net H2O2 effluxes, and Ca2+ influxes under WW and DS.

DOI: 10.1007/s00572-014-0598-z
PubMed: 25085218

Links to Exploration step

pubmed:25085218

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress.</title>
<author>
<name sortKey="Zou, Ying Ning" sort="Zou, Ying Ning" uniqKey="Zou Y" first="Ying-Ning" last="Zou">Ying-Ning Zou</name>
<affiliation>
<nlm:affiliation>College of Horticulture and Gardening/Institute of Root Biology, Yangtze University, 88 Jingmi Road, Jingzhou, Hubei, 434025, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yong Ming" sort="Huang, Yong Ming" uniqKey="Huang Y" first="Yong-Ming" last="Huang">Yong-Ming Huang</name>
</author>
<author>
<name sortKey="Wu, Qiang Sheng" sort="Wu, Qiang Sheng" uniqKey="Wu Q" first="Qiang-Sheng" last="Wu">Qiang-Sheng Wu</name>
</author>
<author>
<name sortKey="He, Xin Hua" sort="He, Xin Hua" uniqKey="He X" first="Xin-Hua" last="He">Xin-Hua He</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25085218</idno>
<idno type="pmid">25085218</idno>
<idno type="doi">10.1007/s00572-014-0598-z</idno>
<idno type="wicri:Area/Main/Corpus">001778</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001778</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress.</title>
<author>
<name sortKey="Zou, Ying Ning" sort="Zou, Ying Ning" uniqKey="Zou Y" first="Ying-Ning" last="Zou">Ying-Ning Zou</name>
<affiliation>
<nlm:affiliation>College of Horticulture and Gardening/Institute of Root Biology, Yangtze University, 88 Jingmi Road, Jingzhou, Hubei, 434025, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yong Ming" sort="Huang, Yong Ming" uniqKey="Huang Y" first="Yong-Ming" last="Huang">Yong-Ming Huang</name>
</author>
<author>
<name sortKey="Wu, Qiang Sheng" sort="Wu, Qiang Sheng" uniqKey="Wu Q" first="Qiang-Sheng" last="Wu">Qiang-Sheng Wu</name>
</author>
<author>
<name sortKey="He, Xin Hua" sort="He, Xin Hua" uniqKey="He X" first="Xin-Hua" last="He">Xin-Hua He</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Calcium (metabolism)</term>
<term>Catalase (metabolism)</term>
<term>Citrus (enzymology)</term>
<term>Citrus (metabolism)</term>
<term>Citrus (microbiology)</term>
<term>Droughts (MeSH)</term>
<term>Glomeromycota (growth & development)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Plant Proteins (metabolism)</term>
<term>Respiratory Burst (MeSH)</term>
<term>Superoxide Dismutase (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Calcium</term>
<term>Catalase</term>
<term>Hydrogen Peroxide</term>
<term>Plant Proteins</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Citrus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Citrus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Citrus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Droughts</term>
<term>Respiratory Burst</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mechanisms of arbuscular mycorrhiza (AM)-induced lower oxidative burst of host plants under drought stress (DS) are not elucidated. A noninvasive microtest technology (NMT) was used to investigate the effects of Funneliformis mosseae on net fluxes of root hydrogen peroxide (H2O2) and calcium ions (Ca2+) in 5-month-old Poncirus trifoliata, in combination with catalase (CAT) and superoxide dismutase (SOD) activities as well as tissue superoxide radical (O2•-) and H2O2 concentrations under DS and well-watered (WW) conditions. A 2-month DS (55% maximum water holding capacity of growth substrates) significantly inhibited AM fungal root colonization, while AM symbiosis significantly increased plant biomass production, irrespective of water status. F. mosseae inoculation generally increased SOD and CAT activity but decreased O2•- and H2O2 concentrations in leaves and roots under WW and DS. Compared with non-AM seedlings, roots of AM seedlings had significantly higher net H2O2 effluxes and net Ca2+ influxes, especially in the meristem zone, but lower net H2O2 efflux in the elongation zone. Net Ca2+ influxes into roots were significantly positively correlated with root net H2O2 effluxes but negatively with root H2O2 concentrations. Results from this study suggest that AM-induced lower oxidative burst is related with higher antioxidant enzyme activities, root net H2O2 effluxes, and Ca2+ influxes under WW and DS.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25085218</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress.</ArticleTitle>
<Pagination>
<MedlinePgn>143-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-014-0598-z</ELocationID>
<Abstract>
<AbstractText>Mechanisms of arbuscular mycorrhiza (AM)-induced lower oxidative burst of host plants under drought stress (DS) are not elucidated. A noninvasive microtest technology (NMT) was used to investigate the effects of Funneliformis mosseae on net fluxes of root hydrogen peroxide (H2O2) and calcium ions (Ca2+) in 5-month-old Poncirus trifoliata, in combination with catalase (CAT) and superoxide dismutase (SOD) activities as well as tissue superoxide radical (O2•-) and H2O2 concentrations under DS and well-watered (WW) conditions. A 2-month DS (55% maximum water holding capacity of growth substrates) significantly inhibited AM fungal root colonization, while AM symbiosis significantly increased plant biomass production, irrespective of water status. F. mosseae inoculation generally increased SOD and CAT activity but decreased O2•- and H2O2 concentrations in leaves and roots under WW and DS. Compared with non-AM seedlings, roots of AM seedlings had significantly higher net H2O2 effluxes and net Ca2+ influxes, especially in the meristem zone, but lower net H2O2 efflux in the elongation zone. Net Ca2+ influxes into roots were significantly positively correlated with root net H2O2 effluxes but negatively with root H2O2 concentrations. Results from this study suggest that AM-induced lower oxidative burst is related with higher antioxidant enzyme activities, root net H2O2 effluxes, and Ca2+ influxes under WW and DS.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zou</LastName>
<ForeName>Ying-Ning</ForeName>
<Initials>YN</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture and Gardening/Institute of Root Biology, Yangtze University, 88 Jingmi Road, Jingzhou, Hubei, 434025, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Yong-Ming</ForeName>
<Initials>YM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Qiang-Sheng</ForeName>
<Initials>QS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Xin-Hua</ForeName>
<Initials>XH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002957" MajorTopicYN="N">Citrus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016897" MajorTopicYN="Y">Respiratory Burst</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25085218</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-014-0598-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol Biochem. 2010 May;48(5):292-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20137959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):698-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:227-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21391813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008 May 5;165(7):715-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17913291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jun;33(6):943-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20082667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1950 Dec;187(2):705-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14803454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Bull. 2001 Oct;201(2):261-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11687412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Mar;63(5):2105-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22200663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Microbiol. 2011 Jan;51(1):37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22282626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Feb;59(2):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jan 12;282(2):1183-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17105724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2014 Mar 18;588(6):1008-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24530500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(1):27-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1319-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosens Bioelectron. 2007 Feb 15;22(7):1186-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16870420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(2):617-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23157494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 18;8(11):e80568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24260421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2001 Mar;160(4):669-681</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11448742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2013 Jan;117(1):22-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23332830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Sep;22(9):1169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Apr;109(5):1009-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22294476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Apr;75(7):1970-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Feb;103(3):525-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19049985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 Nov;163(11):1101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Sci. 2013 Jul 12;20:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23844974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Jan;33(1):81-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23264032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2003 Jun;26(6):929-939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12803620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 May 1;169(7):704-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22418429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jul;15(5):373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15875223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 17;406(6797):731-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10963598</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001778 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001778 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25085218
   |texte=   Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25085218" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020