Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.

Identifieur interne : 001754 ( Main/Corpus ); précédent : 001753; suivant : 001755

Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.

Auteurs : Luis N. Morgado ; Tatiana A. Semenova ; Jeffrey M. Welker ; Marilyn D. Walker ; Erik Smets ; J Zsef Geml

Source :

RBID : pubmed:25156129

English descriptors

Abstract

Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage.

DOI: 10.1111/gcb.12716
PubMed: 25156129
PubMed Central: PMC4322476

Links to Exploration step

pubmed:25156129

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.</title>
<author>
<name sortKey="Morgado, Luis N" sort="Morgado, Luis N" uniqKey="Morgado L" first="Luis N" last="Morgado">Luis N. Morgado</name>
<affiliation>
<nlm:affiliation>Naturalis Biodiversity Center, P.O. Box 9517, Leiden, RA, 2300, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Semenova, Tatiana A" sort="Semenova, Tatiana A" uniqKey="Semenova T" first="Tatiana A" last="Semenova">Tatiana A. Semenova</name>
</author>
<author>
<name sortKey="Welker, Jeffrey M" sort="Welker, Jeffrey M" uniqKey="Welker J" first="Jeffrey M" last="Welker">Jeffrey M. Welker</name>
</author>
<author>
<name sortKey="Walker, Marilyn D" sort="Walker, Marilyn D" uniqKey="Walker M" first="Marilyn D" last="Walker">Marilyn D. Walker</name>
</author>
<author>
<name sortKey="Smets, Erik" sort="Smets, Erik" uniqKey="Smets E" first="Erik" last="Smets">Erik Smets</name>
</author>
<author>
<name sortKey="Geml, J Zsef" sort="Geml, J Zsef" uniqKey="Geml J" first="J Zsef" last="Geml">J Zsef Geml</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25156129</idno>
<idno type="pmid">25156129</idno>
<idno type="doi">10.1111/gcb.12716</idno>
<idno type="pmc">PMC4322476</idno>
<idno type="wicri:Area/Main/Corpus">001754</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001754</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.</title>
<author>
<name sortKey="Morgado, Luis N" sort="Morgado, Luis N" uniqKey="Morgado L" first="Luis N" last="Morgado">Luis N. Morgado</name>
<affiliation>
<nlm:affiliation>Naturalis Biodiversity Center, P.O. Box 9517, Leiden, RA, 2300, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Semenova, Tatiana A" sort="Semenova, Tatiana A" uniqKey="Semenova T" first="Tatiana A" last="Semenova">Tatiana A. Semenova</name>
</author>
<author>
<name sortKey="Welker, Jeffrey M" sort="Welker, Jeffrey M" uniqKey="Welker J" first="Jeffrey M" last="Welker">Jeffrey M. Welker</name>
</author>
<author>
<name sortKey="Walker, Marilyn D" sort="Walker, Marilyn D" uniqKey="Walker M" first="Marilyn D" last="Walker">Marilyn D. Walker</name>
</author>
<author>
<name sortKey="Smets, Erik" sort="Smets, Erik" uniqKey="Smets E" first="Erik" last="Smets">Erik Smets</name>
</author>
<author>
<name sortKey="Geml, J Zsef" sort="Geml, J Zsef" uniqKey="Geml J" first="J Zsef" last="Geml">J Zsef Geml</name>
</author>
</analytic>
<series>
<title level="j">Global change biology</title>
<idno type="eISSN">1365-2486</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alaska (MeSH)</term>
<term>Arctic Regions (MeSH)</term>
<term>Biodiversity (MeSH)</term>
<term>DNA, Fungal (genetics)</term>
<term>Global Warming (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Mycorrhizae (physiology)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Seasons (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Temperature (MeSH)</term>
<term>Tundra (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Alaska</term>
<term>Arctic Regions</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Global Warming</term>
<term>Molecular Sequence Data</term>
<term>Polymerase Chain Reaction</term>
<term>Seasons</term>
<term>Sequence Analysis, DNA</term>
<term>Soil Microbiology</term>
<term>Temperature</term>
<term>Tundra</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25156129</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2486</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Global change biology</Title>
<ISOAbbreviation>Glob Chang Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.</ArticleTitle>
<Pagination>
<MedlinePgn>959-72</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/gcb.12716</ELocationID>
<Abstract>
<AbstractText>Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. </AbstractText>
<CopyrightInformation>© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Morgado</LastName>
<ForeName>Luis N</ForeName>
<Initials>LN</Initials>
<AffiliationInfo>
<Affiliation>Naturalis Biodiversity Center, P.O. Box 9517, Leiden, RA, 2300, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Semenova</LastName>
<ForeName>Tatiana A</ForeName>
<Initials>TA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Welker</LastName>
<ForeName>Jeffrey M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Walker</LastName>
<ForeName>Marilyn D</ForeName>
<Initials>MD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smets</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Geml</LastName>
<ForeName>József</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>KJ792472</AccessionNumber>
<AccessionNumber>KJ792473</AccessionNumber>
<AccessionNumber>KJ792474</AccessionNumber>
<AccessionNumber>KJ792475</AccessionNumber>
<AccessionNumber>KJ792476</AccessionNumber>
<AccessionNumber>KJ792477</AccessionNumber>
<AccessionNumber>KJ792478</AccessionNumber>
<AccessionNumber>KJ792479</AccessionNumber>
<AccessionNumber>KJ792480</AccessionNumber>
<AccessionNumber>KJ792481</AccessionNumber>
<AccessionNumber>KJ792482</AccessionNumber>
<AccessionNumber>KJ792483</AccessionNumber>
<AccessionNumber>KJ792484</AccessionNumber>
<AccessionNumber>KJ792485</AccessionNumber>
<AccessionNumber>KJ792486</AccessionNumber>
<AccessionNumber>KJ792487</AccessionNumber>
<AccessionNumber>KJ792488</AccessionNumber>
<AccessionNumber>KJ792489</AccessionNumber>
<AccessionNumber>KJ792490</AccessionNumber>
<AccessionNumber>KJ792491</AccessionNumber>
<AccessionNumber>KJ792492</AccessionNumber>
<AccessionNumber>KJ792493</AccessionNumber>
<AccessionNumber>KJ792494</AccessionNumber>
<AccessionNumber>KJ792495</AccessionNumber>
<AccessionNumber>KJ792496</AccessionNumber>
<AccessionNumber>KJ792497</AccessionNumber>
<AccessionNumber>KJ792498</AccessionNumber>
<AccessionNumber>KJ792499</AccessionNumber>
<AccessionNumber>KJ792500</AccessionNumber>
<AccessionNumber>KJ792501</AccessionNumber>
<AccessionNumber>KJ792502</AccessionNumber>
<AccessionNumber>KJ792503</AccessionNumber>
<AccessionNumber>KJ792504</AccessionNumber>
<AccessionNumber>KJ792505</AccessionNumber>
<AccessionNumber>KJ792506</AccessionNumber>
<AccessionNumber>KJ792507</AccessionNumber>
<AccessionNumber>KJ792508</AccessionNumber>
<AccessionNumber>KJ792509</AccessionNumber>
<AccessionNumber>KJ792510</AccessionNumber>
<AccessionNumber>KJ792511</AccessionNumber>
<AccessionNumber>KJ792512</AccessionNumber>
<AccessionNumber>KJ792513</AccessionNumber>
<AccessionNumber>KJ792514</AccessionNumber>
<AccessionNumber>KJ792515</AccessionNumber>
<AccessionNumber>KJ792516</AccessionNumber>
<AccessionNumber>KJ792517</AccessionNumber>
<AccessionNumber>KJ792518</AccessionNumber>
<AccessionNumber>KJ792519</AccessionNumber>
<AccessionNumber>KJ792520</AccessionNumber>
<AccessionNumber>KJ792521</AccessionNumber>
<AccessionNumber>KJ792522</AccessionNumber>
<AccessionNumber>KJ792523</AccessionNumber>
<AccessionNumber>KJ792524</AccessionNumber>
<AccessionNumber>KJ792525</AccessionNumber>
<AccessionNumber>KJ792526</AccessionNumber>
<AccessionNumber>KJ792527</AccessionNumber>
<AccessionNumber>KJ792528</AccessionNumber>
<AccessionNumber>KJ792529</AccessionNumber>
<AccessionNumber>KJ792530</AccessionNumber>
<AccessionNumber>KJ792531</AccessionNumber>
<AccessionNumber>KJ792532</AccessionNumber>
<AccessionNumber>KJ792533</AccessionNumber>
<AccessionNumber>KJ792534</AccessionNumber>
<AccessionNumber>KJ792535</AccessionNumber>
<AccessionNumber>KJ792536</AccessionNumber>
<AccessionNumber>KJ792537</AccessionNumber>
<AccessionNumber>KJ792538</AccessionNumber>
<AccessionNumber>KJ792539</AccessionNumber>
<AccessionNumber>KJ792540</AccessionNumber>
<AccessionNumber>KJ792541</AccessionNumber>
<AccessionNumber>KJ792542</AccessionNumber>
<AccessionNumber>KJ792543</AccessionNumber>
<AccessionNumber>KJ792544</AccessionNumber>
<AccessionNumber>KJ792545</AccessionNumber>
<AccessionNumber>KJ792546</AccessionNumber>
<AccessionNumber>KJ792547</AccessionNumber>
<AccessionNumber>KJ792548</AccessionNumber>
<AccessionNumber>KJ792549</AccessionNumber>
<AccessionNumber>KJ792550</AccessionNumber>
<AccessionNumber>KJ792551</AccessionNumber>
<AccessionNumber>KJ792552</AccessionNumber>
<AccessionNumber>KJ792553</AccessionNumber>
<AccessionNumber>KJ792554</AccessionNumber>
<AccessionNumber>KJ792555</AccessionNumber>
<AccessionNumber>KJ792556</AccessionNumber>
<AccessionNumber>KJ792557</AccessionNumber>
<AccessionNumber>KJ792558</AccessionNumber>
<AccessionNumber>KJ792559</AccessionNumber>
<AccessionNumber>KJ792560</AccessionNumber>
<AccessionNumber>KJ792561</AccessionNumber>
<AccessionNumber>KJ792562</AccessionNumber>
<AccessionNumber>KJ792563</AccessionNumber>
<AccessionNumber>KJ792564</AccessionNumber>
<AccessionNumber>KJ792565</AccessionNumber>
<AccessionNumber>KJ792566</AccessionNumber>
<AccessionNumber>KJ792567</AccessionNumber>
<AccessionNumber>KJ792568</AccessionNumber>
<AccessionNumber>KJ792569</AccessionNumber>
<AccessionNumber>KJ792570</AccessionNumber>
<AccessionNumber>KJ792571</AccessionNumber>
<AccessionNumber>KJ792572</AccessionNumber>
<AccessionNumber>KJ792573</AccessionNumber>
<AccessionNumber>KJ792574</AccessionNumber>
<AccessionNumber>KJ792575</AccessionNumber>
<AccessionNumber>KJ792576</AccessionNumber>
<AccessionNumber>KJ792577</AccessionNumber>
<AccessionNumber>KJ792578</AccessionNumber>
<AccessionNumber>KJ792579</AccessionNumber>
<AccessionNumber>KJ792580</AccessionNumber>
<AccessionNumber>KJ792581</AccessionNumber>
<AccessionNumber>KJ792582</AccessionNumber>
<AccessionNumber>KJ792583</AccessionNumber>
<AccessionNumber>KJ792584</AccessionNumber>
<AccessionNumber>KJ792585</AccessionNumber>
<AccessionNumber>KJ792586</AccessionNumber>
<AccessionNumber>KJ792587</AccessionNumber>
<AccessionNumber>KJ792588</AccessionNumber>
<AccessionNumber>KJ792589</AccessionNumber>
<AccessionNumber>KJ792590</AccessionNumber>
<AccessionNumber>KJ792591</AccessionNumber>
<AccessionNumber>KJ792592</AccessionNumber>
<AccessionNumber>KJ792593</AccessionNumber>
<AccessionNumber>KJ792594</AccessionNumber>
<AccessionNumber>KJ792595</AccessionNumber>
<AccessionNumber>KJ792596</AccessionNumber>
<AccessionNumber>KJ792597</AccessionNumber>
<AccessionNumber>KJ792598</AccessionNumber>
<AccessionNumber>KJ792599</AccessionNumber>
<AccessionNumber>KJ792600</AccessionNumber>
<AccessionNumber>KJ792601</AccessionNumber>
<AccessionNumber>KJ792602</AccessionNumber>
<AccessionNumber>KJ792603</AccessionNumber>
<AccessionNumber>KJ792604</AccessionNumber>
<AccessionNumber>KJ792605</AccessionNumber>
<AccessionNumber>KJ792606</AccessionNumber>
<AccessionNumber>KJ792607</AccessionNumber>
<AccessionNumber>KJ792608</AccessionNumber>
<AccessionNumber>KJ792609</AccessionNumber>
<AccessionNumber>KJ792610</AccessionNumber>
<AccessionNumber>KJ792611</AccessionNumber>
<AccessionNumber>KJ792612</AccessionNumber>
<AccessionNumber>KJ792613</AccessionNumber>
<AccessionNumber>KJ792614</AccessionNumber>
<AccessionNumber>KJ792615</AccessionNumber>
<AccessionNumber>KJ792616</AccessionNumber>
<AccessionNumber>KJ792617</AccessionNumber>
<AccessionNumber>KJ792618</AccessionNumber>
<AccessionNumber>KJ792619</AccessionNumber>
<AccessionNumber>KJ792620</AccessionNumber>
<AccessionNumber>KJ792621</AccessionNumber>
<AccessionNumber>KJ792622</AccessionNumber>
<AccessionNumber>KJ792623</AccessionNumber>
<AccessionNumber>KJ792624</AccessionNumber>
<AccessionNumber>KJ792625</AccessionNumber>
<AccessionNumber>KJ792626</AccessionNumber>
<AccessionNumber>KJ792627</AccessionNumber>
<AccessionNumber>KJ792628</AccessionNumber>
<AccessionNumber>KJ792629</AccessionNumber>
<AccessionNumber>KJ792630</AccessionNumber>
<AccessionNumber>KJ792631</AccessionNumber>
<AccessionNumber>KJ792632</AccessionNumber>
<AccessionNumber>KJ792633</AccessionNumber>
<AccessionNumber>KJ792634</AccessionNumber>
<AccessionNumber>KJ792635</AccessionNumber>
<AccessionNumber>KJ792636</AccessionNumber>
<AccessionNumber>KJ792637</AccessionNumber>
<AccessionNumber>KJ792638</AccessionNumber>
<AccessionNumber>KJ792639</AccessionNumber>
<AccessionNumber>KJ792640</AccessionNumber>
<AccessionNumber>KJ792641</AccessionNumber>
<AccessionNumber>KJ792642</AccessionNumber>
<AccessionNumber>KJ792643</AccessionNumber>
<AccessionNumber>KJ792644</AccessionNumber>
<AccessionNumber>KJ792645</AccessionNumber>
<AccessionNumber>KJ792646</AccessionNumber>
<AccessionNumber>KJ792647</AccessionNumber>
<AccessionNumber>KJ792648</AccessionNumber>
<AccessionNumber>KJ792649</AccessionNumber>
<AccessionNumber>KJ792650</AccessionNumber>
<AccessionNumber>KJ792651</AccessionNumber>
<AccessionNumber>KJ792652</AccessionNumber>
<AccessionNumber>KJ792653</AccessionNumber>
<AccessionNumber>KJ792654</AccessionNumber>
<AccessionNumber>KJ792655</AccessionNumber>
<AccessionNumber>KJ792656</AccessionNumber>
<AccessionNumber>KJ792657</AccessionNumber>
<AccessionNumber>KJ792658</AccessionNumber>
<AccessionNumber>KJ792659</AccessionNumber>
<AccessionNumber>KJ792660</AccessionNumber>
<AccessionNumber>KJ792661</AccessionNumber>
<AccessionNumber>KJ792662</AccessionNumber>
<AccessionNumber>KJ792663</AccessionNumber>
<AccessionNumber>KJ792664</AccessionNumber>
<AccessionNumber>KJ792665</AccessionNumber>
<AccessionNumber>KJ792666</AccessionNumber>
<AccessionNumber>KJ792667</AccessionNumber>
<AccessionNumber>KJ792668</AccessionNumber>
<AccessionNumber>KJ792669</AccessionNumber>
<AccessionNumber>KJ792670</AccessionNumber>
<AccessionNumber>KJ792671</AccessionNumber>
<AccessionNumber>KJ792672</AccessionNumber>
<AccessionNumber>KJ792673</AccessionNumber>
<AccessionNumber>KJ792674</AccessionNumber>
<AccessionNumber>KJ792675</AccessionNumber>
<AccessionNumber>KJ792676</AccessionNumber>
<AccessionNumber>KJ792677</AccessionNumber>
<AccessionNumber>KJ792678</AccessionNumber>
<AccessionNumber>KJ792679</AccessionNumber>
<AccessionNumber>KJ792680</AccessionNumber>
<AccessionNumber>KJ792681</AccessionNumber>
<AccessionNumber>KJ792682</AccessionNumber>
<AccessionNumber>KJ792683</AccessionNumber>
<AccessionNumber>KJ792684</AccessionNumber>
<AccessionNumber>KJ792685</AccessionNumber>
<AccessionNumber>KJ792686</AccessionNumber>
<AccessionNumber>KJ792687</AccessionNumber>
<AccessionNumber>KJ792688</AccessionNumber>
<AccessionNumber>KJ792689</AccessionNumber>
<AccessionNumber>KJ792690</AccessionNumber>
<AccessionNumber>KJ792691</AccessionNumber>
<AccessionNumber>KJ792692</AccessionNumber>
<AccessionNumber>KJ792693</AccessionNumber>
<AccessionNumber>KJ792694</AccessionNumber>
<AccessionNumber>KJ792695</AccessionNumber>
<AccessionNumber>KJ792696</AccessionNumber>
<AccessionNumber>KJ792697</AccessionNumber>
<AccessionNumber>KJ792698</AccessionNumber>
<AccessionNumber>KJ792699</AccessionNumber>
<AccessionNumber>KJ792700</AccessionNumber>
<AccessionNumber>KJ792701</AccessionNumber>
<AccessionNumber>KJ792702</AccessionNumber>
<AccessionNumber>KJ792703</AccessionNumber>
<AccessionNumber>KJ792704</AccessionNumber>
<AccessionNumber>KJ792705</AccessionNumber>
<AccessionNumber>KJ792706</AccessionNumber>
<AccessionNumber>KJ792707</AccessionNumber>
<AccessionNumber>KJ792708</AccessionNumber>
<AccessionNumber>KJ792709</AccessionNumber>
<AccessionNumber>KJ792710</AccessionNumber>
<AccessionNumber>KJ792711</AccessionNumber>
<AccessionNumber>KJ792712</AccessionNumber>
<AccessionNumber>KJ792713</AccessionNumber>
<AccessionNumber>KJ792714</AccessionNumber>
<AccessionNumber>KJ792715</AccessionNumber>
<AccessionNumber>KJ792716</AccessionNumber>
<AccessionNumber>KJ792717</AccessionNumber>
<AccessionNumber>KJ792718</AccessionNumber>
<AccessionNumber>KJ792719</AccessionNumber>
<AccessionNumber>KJ792720</AccessionNumber>
<AccessionNumber>KJ792721</AccessionNumber>
<AccessionNumber>KJ792722</AccessionNumber>
<AccessionNumber>KJ792723</AccessionNumber>
<AccessionNumber>KJ792724</AccessionNumber>
<AccessionNumber>KJ792725</AccessionNumber>
<AccessionNumber>KJ792726</AccessionNumber>
<AccessionNumber>KJ792727</AccessionNumber>
<AccessionNumber>KJ792728</AccessionNumber>
<AccessionNumber>KJ792729</AccessionNumber>
<AccessionNumber>KJ792730</AccessionNumber>
<AccessionNumber>KJ792731</AccessionNumber>
<AccessionNumber>KJ792732</AccessionNumber>
<AccessionNumber>KJ792733</AccessionNumber>
<AccessionNumber>KJ792734</AccessionNumber>
<AccessionNumber>KJ792735</AccessionNumber>
<AccessionNumber>KJ792736</AccessionNumber>
<AccessionNumber>KJ792737</AccessionNumber>
<AccessionNumber>KJ792738</AccessionNumber>
<AccessionNumber>KJ792739</AccessionNumber>
<AccessionNumber>KJ792740</AccessionNumber>
<AccessionNumber>KJ792741</AccessionNumber>
<AccessionNumber>KJ792742</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Glob Chang Biol</MedlineTA>
<NlmUniqueID>9888746</NlmUniqueID>
<ISSNLinking>1354-1013</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000413" MajorTopicYN="N" Type="Geographic">Alaska</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001110" MajorTopicYN="N" Type="Geographic">Arctic Regions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="Y">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057232" MajorTopicYN="Y">Global Warming</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065929" MajorTopicYN="Y">Tundra</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ITEX</Keyword>
<Keyword MajorTopicYN="N">Toolik Lake</Keyword>
<Keyword MajorTopicYN="N">arctic ecology</Keyword>
<Keyword MajorTopicYN="N">climate changes</Keyword>
<Keyword MajorTopicYN="N">fungal ecology</Keyword>
<Keyword MajorTopicYN="N">fungi</Keyword>
<Keyword MajorTopicYN="N">long-term ecological research</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>07</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25156129</ArticleId>
<ArticleId IdType="doi">10.1111/gcb.12716</ArticleId>
<ArticleId IdType="pmc">PMC4322476</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol Resour. 2013 Mar;13(2):218-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23350562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Sep;74(18):5792-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18658284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2009 Jan;55(1):84-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19190704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Sep 11;325(5946):1355-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19745143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 29;339(6127):1615-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23539604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(6):e99852</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24937200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Jun;19(5):305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 May;17(3):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 May;194(3):614-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22489902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Sep;161(3):601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19554352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Nov;21(11):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16843567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):245-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24725281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Sep;195(4):832-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22758212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2013 Dec;86(3):557-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23869991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2006 Apr;110(Pt 4):369-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16546367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 May;18(10):2213-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19389163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(2):433-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26207269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Feb;15(2):164-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 30;497(7451):615-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23676669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Nov;82(2):303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Sep;71(9):5544-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Aug;167(2):579-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):263-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19138216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Dec;19(24):5555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21050295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(2):391-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16866945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 May;23(10):2452-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24762095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Jul;23(13):3258-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24689939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Nov;19(11):3529-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23843128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2003 Jan;107(Pt 1):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12735239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Apr;87(4):816-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16676524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2007 Jul;31(4):388-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17466031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Dec;82(3):666-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Jun;19(6):1780-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e27310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 2;341(6145):519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23908231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Apr;20(4):217-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20191371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e46135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23029410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Dec;15(12):1415-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22938383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 25;319(5862):456-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18218895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1974;101(4):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4281647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 Feb;142(4):616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15688218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23534863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21070665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Jan;19(1):64-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Jul;12(7):1842-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20236166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2014 Feb;174(2):339-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24052332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2007 Feb;42(2):543-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2005 Nov;8(11):1191-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21352443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1431-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24304469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Nov;22(21):5271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):657-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2002 Nov-Dec;94(6):921-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev Clim Change. 2014 May;5(3):389-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25810765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 May;22(4):309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21779811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2012 Feb;14(2):285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21923700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(4):873-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 Sep;153(3):643-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17497180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(4):875-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18783355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2008 Jul-Aug;100(4):577-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18833751</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001754 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001754 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25156129
   |texte=   Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25156129" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020