Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity.

Identifieur interne : 001752 ( Main/Corpus ); précédent : 001751; suivant : 001753

Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity.

Auteurs : Airong Liu ; Shuangchen Chen ; Rui Chang ; Dilin Liu ; Haoran Chen ; Golam Jalal Ahammed ; Xiaomin Lin ; Chaoxing He

Source :

RBID : pubmed:25160659

English descriptors

Abstract

The combined effects of arbuscular mycorrhizal fungi (AMF) and low temperature (LT) on cucumber plants were investigated with respect to biomass production, H2O2 accumulation, NADPH oxidase, ATPase activity and related gene expression. Mycorrhizal colonization ratio was gradually increased after AMF-inoculation. However, LT significantly decreased mycorrhizal colonization ability and mycorrhizal dependency. Regardless of temperature, the total fresh and dry mass, and root activity of AMF-inoculated plants were significantly higher than that of the non-AMF control. The H2O2 accumulation in AMF-inoculated roots was decreased by 42.44% compared with the control under LT. H2O2 predominantly accumulated on the cell walls of apoplast but was hardly detectable in the cytosol or organelles of roots. Again, NADPH oxidase activity involved in H2O2 production was significantly reduced by AMF inoculation under LT. AMF-inoculation remarkably increased the activities of P-type H(+)-ATPase, P-Ca(2+)-ATPase, V-type H(+)-ATPase, total ATPase activity, ATP concentration and plasma membrane protein content in the roots under LT. Additionally, ATP concentration and expression of plasma membrane ATPase genes were increased by AMF-inoculation. These results indicate that NADPH oxidase and ATPase might play an important role in AMF-mediated tolerance to chilling stress, thereby maintaining a lower H2O2 accumulation in the roots of cucumber.

DOI: 10.1007/s10265-014-0657-8
PubMed: 25160659

Links to Exploration step

pubmed:25160659

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity.</title>
<author>
<name sortKey="Liu, Airong" sort="Liu, Airong" uniqKey="Liu A" first="Airong" last="Liu">Airong Liu</name>
<affiliation>
<nlm:affiliation>College of Forestry, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Shuangchen" sort="Chen, Shuangchen" uniqKey="Chen S" first="Shuangchen" last="Chen">Shuangchen Chen</name>
</author>
<author>
<name sortKey="Chang, Rui" sort="Chang, Rui" uniqKey="Chang R" first="Rui" last="Chang">Rui Chang</name>
</author>
<author>
<name sortKey="Liu, Dilin" sort="Liu, Dilin" uniqKey="Liu D" first="Dilin" last="Liu">Dilin Liu</name>
</author>
<author>
<name sortKey="Chen, Haoran" sort="Chen, Haoran" uniqKey="Chen H" first="Haoran" last="Chen">Haoran Chen</name>
</author>
<author>
<name sortKey="Ahammed, Golam Jalal" sort="Ahammed, Golam Jalal" uniqKey="Ahammed G" first="Golam Jalal" last="Ahammed">Golam Jalal Ahammed</name>
</author>
<author>
<name sortKey="Lin, Xiaomin" sort="Lin, Xiaomin" uniqKey="Lin X" first="Xiaomin" last="Lin">Xiaomin Lin</name>
</author>
<author>
<name sortKey="He, Chaoxing" sort="He, Chaoxing" uniqKey="He C" first="Chaoxing" last="He">Chaoxing He</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25160659</idno>
<idno type="pmid">25160659</idno>
<idno type="doi">10.1007/s10265-014-0657-8</idno>
<idno type="wicri:Area/Main/Corpus">001752</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001752</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity.</title>
<author>
<name sortKey="Liu, Airong" sort="Liu, Airong" uniqKey="Liu A" first="Airong" last="Liu">Airong Liu</name>
<affiliation>
<nlm:affiliation>College of Forestry, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Shuangchen" sort="Chen, Shuangchen" uniqKey="Chen S" first="Shuangchen" last="Chen">Shuangchen Chen</name>
</author>
<author>
<name sortKey="Chang, Rui" sort="Chang, Rui" uniqKey="Chang R" first="Rui" last="Chang">Rui Chang</name>
</author>
<author>
<name sortKey="Liu, Dilin" sort="Liu, Dilin" uniqKey="Liu D" first="Dilin" last="Liu">Dilin Liu</name>
</author>
<author>
<name sortKey="Chen, Haoran" sort="Chen, Haoran" uniqKey="Chen H" first="Haoran" last="Chen">Haoran Chen</name>
</author>
<author>
<name sortKey="Ahammed, Golam Jalal" sort="Ahammed, Golam Jalal" uniqKey="Ahammed G" first="Golam Jalal" last="Ahammed">Golam Jalal Ahammed</name>
</author>
<author>
<name sortKey="Lin, Xiaomin" sort="Lin, Xiaomin" uniqKey="Lin X" first="Xiaomin" last="Lin">Xiaomin Lin</name>
</author>
<author>
<name sortKey="He, Chaoxing" sort="He, Chaoxing" uniqKey="He C" first="Chaoxing" last="He">Chaoxing He</name>
</author>
</analytic>
<series>
<title level="j">Journal of plant research</title>
<idno type="eISSN">1618-0860</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphatases (genetics)</term>
<term>Adenosine Triphosphatases (metabolism)</term>
<term>Cold Temperature (MeSH)</term>
<term>Cucumis sativus (genetics)</term>
<term>Cucumis sativus (microbiology)</term>
<term>Cucumis sativus (physiology)</term>
<term>Glomeromycota (physiology)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Hydrogen Peroxide</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cucumis sativus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Cucumis sativus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cucumis sativus</term>
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The combined effects of arbuscular mycorrhizal fungi (AMF) and low temperature (LT) on cucumber plants were investigated with respect to biomass production, H2O2 accumulation, NADPH oxidase, ATPase activity and related gene expression. Mycorrhizal colonization ratio was gradually increased after AMF-inoculation. However, LT significantly decreased mycorrhizal colonization ability and mycorrhizal dependency. Regardless of temperature, the total fresh and dry mass, and root activity of AMF-inoculated plants were significantly higher than that of the non-AMF control. The H2O2 accumulation in AMF-inoculated roots was decreased by 42.44% compared with the control under LT. H2O2 predominantly accumulated on the cell walls of apoplast but was hardly detectable in the cytosol or organelles of roots. Again, NADPH oxidase activity involved in H2O2 production was significantly reduced by AMF inoculation under LT. AMF-inoculation remarkably increased the activities of P-type H(+)-ATPase, P-Ca(2+)-ATPase, V-type H(+)-ATPase, total ATPase activity, ATP concentration and plasma membrane protein content in the roots under LT. Additionally, ATP concentration and expression of plasma membrane ATPase genes were increased by AMF-inoculation. These results indicate that NADPH oxidase and ATPase might play an important role in AMF-mediated tolerance to chilling stress, thereby maintaining a lower H2O2 accumulation in the roots of cucumber.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25160659</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1618-0860</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>127</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of plant research</Title>
<ISOAbbreviation>J Plant Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity.</ArticleTitle>
<Pagination>
<MedlinePgn>775-85</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10265-014-0657-8</ELocationID>
<Abstract>
<AbstractText>The combined effects of arbuscular mycorrhizal fungi (AMF) and low temperature (LT) on cucumber plants were investigated with respect to biomass production, H2O2 accumulation, NADPH oxidase, ATPase activity and related gene expression. Mycorrhizal colonization ratio was gradually increased after AMF-inoculation. However, LT significantly decreased mycorrhizal colonization ability and mycorrhizal dependency. Regardless of temperature, the total fresh and dry mass, and root activity of AMF-inoculated plants were significantly higher than that of the non-AMF control. The H2O2 accumulation in AMF-inoculated roots was decreased by 42.44% compared with the control under LT. H2O2 predominantly accumulated on the cell walls of apoplast but was hardly detectable in the cytosol or organelles of roots. Again, NADPH oxidase activity involved in H2O2 production was significantly reduced by AMF inoculation under LT. AMF-inoculation remarkably increased the activities of P-type H(+)-ATPase, P-Ca(2+)-ATPase, V-type H(+)-ATPase, total ATPase activity, ATP concentration and plasma membrane protein content in the roots under LT. Additionally, ATP concentration and expression of plasma membrane ATPase genes were increased by AMF-inoculation. These results indicate that NADPH oxidase and ATPase might play an important role in AMF-mediated tolerance to chilling stress, thereby maintaining a lower H2O2 accumulation in the roots of cucumber.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Airong</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Shuangchen</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Dilin</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Haoran</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ahammed</LastName>
<ForeName>Golam Jalal</ForeName>
<Initials>GJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Xiaomin</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Chaoxing</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>J Plant Res</MedlineTA>
<NlmUniqueID>9887853</NlmUniqueID>
<ISSNLinking>0918-9440</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000251">Adenosine Triphosphatases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000251" MajorTopicYN="N">Adenosine Triphosphatases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="N">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018553" MajorTopicYN="N">Cucumis sativus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25160659</ArticleId>
<ArticleId IdType="doi">10.1007/s10265-014-0657-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2007 May;17(3):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 May;90(5):1378-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19537557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1975 Nov;69(1):261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">129016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1222-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16428598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jul;53(374):1683-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jan;17(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):1031-1037</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2012 Dec;43(6):2469-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22660900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1980 Apr;26(4):536-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6155191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Oct;16(10):2652-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Sep 5;260(19):10434-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2863267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2003 Dec;116(6):517-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12905076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2013 Jun 15;170(9):828-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23399403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2008 Nov;81(5):440-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18777153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Jun;20(5):325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19936801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2012 Mar;125(2):291-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21638005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Feb;19(2):69-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18841397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 Jul 15;167(11):862-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20227134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Oct;211(5):609-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):281-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21414013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2013 Jan 1;170(1):74-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Oct;52(363):1969-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11559732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2004 Apr;14(2):93-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Feb;9(2):209-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9061952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2012 Jan;14 (1):62-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22567695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):1281-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jul;15(5):373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15875223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2012 Nov;60:141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22935478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Aug 15;16(16):4806-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Aug;64(11):3099-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23918957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2002 Sep;59(9):1428-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12440767</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001752 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001752 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25160659
   |texte=   Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25160659" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020