Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses.

Identifieur interne : 001708 ( Main/Corpus ); précédent : 001707; suivant : 001709

Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses.

Auteurs : Marjatta Raudaskoski ; Erika Kothe

Source :

RBID : pubmed:25260351

English descriptors

Abstract

The availability of genome sequences from both arbuscular and ectomycorrhizal fungi and their hosts has, together with elegant biochemical and molecular biological analyses, provided new information on signal exchange between the partners in mycorrhizal associations. The progress in understanding cellular processes has been more rapid in arbuscular than ectomycorrhizal symbiosis due to its similarities of early processes with Rhizobium-legume symbiosis. In ectomycorrhiza, the role of auxin and ethylene produced by both fungus and host plant is becoming understood at the molecular level, although the actual ligands and receptors leading to ectomycorrhizal symbiosis have not yet been discovered. For both systems, the functions of small effector proteins secreted from the respective fungus and taken up into the plant cell may be pivotal in understanding the attenuation of host defense. We review the subject by comparing cross-talk between fungal and plant partners during formation and establishment of arbuscular and ectomycorrhizal symbioses.

DOI: 10.1007/s00572-014-0607-2
PubMed: 25260351

Links to Exploration step

pubmed:25260351

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses.</title>
<author>
<name sortKey="Raudaskoski, Marjatta" sort="Raudaskoski, Marjatta" uniqKey="Raudaskoski M" first="Marjatta" last="Raudaskoski">Marjatta Raudaskoski</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kothe, Erika" sort="Kothe, Erika" uniqKey="Kothe E" first="Erika" last="Kothe">Erika Kothe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25260351</idno>
<idno type="pmid">25260351</idno>
<idno type="doi">10.1007/s00572-014-0607-2</idno>
<idno type="wicri:Area/Main/Corpus">001708</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001708</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses.</title>
<author>
<name sortKey="Raudaskoski, Marjatta" sort="Raudaskoski, Marjatta" uniqKey="Raudaskoski M" first="Marjatta" last="Raudaskoski">Marjatta Raudaskoski</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kothe, Erika" sort="Kothe, Erika" uniqKey="Kothe E" first="Erika" last="Kothe">Erika Kothe</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Mycorrhizae (physiology)</term>
<term>Plants (metabolism)</term>
<term>Plants (microbiology)</term>
<term>Root Nodules, Plant (metabolism)</term>
<term>Root Nodules, Plant (microbiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
<term>Root Nodules, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
<term>Root Nodules, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Signal Transduction</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The availability of genome sequences from both arbuscular and ectomycorrhizal fungi and their hosts has, together with elegant biochemical and molecular biological analyses, provided new information on signal exchange between the partners in mycorrhizal associations. The progress in understanding cellular processes has been more rapid in arbuscular than ectomycorrhizal symbiosis due to its similarities of early processes with Rhizobium-legume symbiosis. In ectomycorrhiza, the role of auxin and ethylene produced by both fungus and host plant is becoming understood at the molecular level, although the actual ligands and receptors leading to ectomycorrhizal symbiosis have not yet been discovered. For both systems, the functions of small effector proteins secreted from the respective fungus and taken up into the plant cell may be pivotal in understanding the attenuation of host defense. We review the subject by comparing cross-talk between fungal and plant partners during formation and establishment of arbuscular and ectomycorrhizal symbioses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25260351</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses.</ArticleTitle>
<Pagination>
<MedlinePgn>243-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-014-0607-2</ELocationID>
<Abstract>
<AbstractText>The availability of genome sequences from both arbuscular and ectomycorrhizal fungi and their hosts has, together with elegant biochemical and molecular biological analyses, provided new information on signal exchange between the partners in mycorrhizal associations. The progress in understanding cellular processes has been more rapid in arbuscular than ectomycorrhizal symbiosis due to its similarities of early processes with Rhizobium-legume symbiosis. In ectomycorrhiza, the role of auxin and ethylene produced by both fungus and host plant is becoming understood at the molecular level, although the actual ligands and receptors leading to ectomycorrhizal symbiosis have not yet been discovered. For both systems, the functions of small effector proteins secreted from the respective fungus and taken up into the plant cell may be pivotal in understanding the attenuation of host defense. We review the subject by comparing cross-talk between fungal and plant partners during formation and establishment of arbuscular and ectomycorrhizal symbioses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Raudaskoski</LastName>
<ForeName>Marjatta</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kothe</LastName>
<ForeName>Erika</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053204" MajorTopicYN="N">Root Nodules, Plant</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25260351</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-014-0607-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jun;13(6):693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10830269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44742</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22970303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1991-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Oct;14(10):1140-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11605953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 5;333(6043):762-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jun 18;4:204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2007 Aug;5(8):619-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17632573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Oct;44(2):195-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1174-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15824279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Mar;68(3):1408-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11872494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2012 Mar;49(3):199-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22293303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Jun;66(11):1358-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15913673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Feb;18(2):103-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:317-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21663438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 07;483(7389):341-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22398443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 05;478(7369):395-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 May;36(5):909-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23145472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Apr;36(1):201-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10760177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 Jul;39(5-6):335-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Jun;97(6):925-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):755-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1671-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22652128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):188-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23506613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2007 Jul 05;12(7):1290-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14959-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17003129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Oct-Nov;70(15-16):1867-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19665150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Feb;9(2):e1003177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23459172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jul;14(7):364-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Feb;14(2):135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11204776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):402-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Feb;18(2):72-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23182342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):2018-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Oct;17(7):563-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17516095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Nov 6;22(21):2032-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22959345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(2):230-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Nov 16;480(7378):520-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22089132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Sep;195(4):857-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):952-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 Feb 2;168(1):93-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8626073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Aug;22(6):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22159964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):190-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2008 Dec 15;9(18):3004-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19035372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:19-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2009 Jul;11(7):1878-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19397683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Nov 24;99(5):463-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10589675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Feb;16(1):118-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23246268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Nov;15(8):620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Microbiol Immunol Hung. 2008 Jun;55(2):125-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18595318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Oct 18;12(4):484-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23084917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):438-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22633856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Dec;15(6):691-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010 Jul 27;1:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20975705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Dec 7;378(6557):626-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Jul;5(7):864-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20448463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 May;9(3):339-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1997;38:1-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8922117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Aug;81(3):751-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21692877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1999 Jul-Aug;27(2-3):161-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10441442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):589-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2013 Jun;5(3):353-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754716</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001708 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001708 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25260351
   |texte=   Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25260351" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020