Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils.

Identifieur interne : 001688 ( Main/Corpus ); précédent : 001687; suivant : 001689

Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils.

Auteurs : Akihiro Koyama ; Matthew D. Wallenstein ; Rodney T. Simpson ; John C. Moore

Source :

RBID : pubmed:25324836

Abstract

The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-Proteobacteria and β-Proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming.

DOI: 10.3389/fmicb.2014.00516
PubMed: 25324836
PubMed Central: PMC4183186

Links to Exploration step

pubmed:25324836

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils.</title>
<author>
<name sortKey="Koyama, Akihiro" sort="Koyama, Akihiro" uniqKey="Koyama A" first="Akihiro" last="Koyama">Akihiro Koyama</name>
<affiliation>
<nlm:affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA ; Department of Biology, Colorado State University Fort Collins, CO, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wallenstein, Matthew D" sort="Wallenstein, Matthew D" uniqKey="Wallenstein M" first="Matthew D" last="Wallenstein">Matthew D. Wallenstein</name>
<affiliation>
<nlm:affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA ; Department of Ecosystem Science and Sustainability, Colorado State University Fort Collins, CO, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Simpson, Rodney T" sort="Simpson, Rodney T" uniqKey="Simpson R" first="Rodney T" last="Simpson">Rodney T. Simpson</name>
<affiliation>
<nlm:affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moore, John C" sort="Moore, John C" uniqKey="Moore J" first="John C" last="Moore">John C. Moore</name>
<affiliation>
<nlm:affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA ; Department of Ecosystem Science and Sustainability, Colorado State University Fort Collins, CO, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25324836</idno>
<idno type="pmid">25324836</idno>
<idno type="doi">10.3389/fmicb.2014.00516</idno>
<idno type="pmc">PMC4183186</idno>
<idno type="wicri:Area/Main/Corpus">001688</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001688</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils.</title>
<author>
<name sortKey="Koyama, Akihiro" sort="Koyama, Akihiro" uniqKey="Koyama A" first="Akihiro" last="Koyama">Akihiro Koyama</name>
<affiliation>
<nlm:affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA ; Department of Biology, Colorado State University Fort Collins, CO, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wallenstein, Matthew D" sort="Wallenstein, Matthew D" uniqKey="Wallenstein M" first="Matthew D" last="Wallenstein">Matthew D. Wallenstein</name>
<affiliation>
<nlm:affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA ; Department of Ecosystem Science and Sustainability, Colorado State University Fort Collins, CO, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Simpson, Rodney T" sort="Simpson, Rodney T" uniqKey="Simpson R" first="Rodney T" last="Simpson">Rodney T. Simpson</name>
<affiliation>
<nlm:affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moore, John C" sort="Moore, John C" uniqKey="Moore J" first="John C" last="Moore">John C. Moore</name>
<affiliation>
<nlm:affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA ; Department of Ecosystem Science and Sustainability, Colorado State University Fort Collins, CO, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-Proteobacteria and β-Proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25324836</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils.</ArticleTitle>
<Pagination>
<MedlinePgn>516</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2014.00516</ELocationID>
<Abstract>
<AbstractText>The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-Proteobacteria and β-Proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Koyama</LastName>
<ForeName>Akihiro</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA ; Department of Biology, Colorado State University Fort Collins, CO, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wallenstein</LastName>
<ForeName>Matthew D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA ; Department of Ecosystem Science and Sustainability, Colorado State University Fort Collins, CO, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Simpson</LastName>
<ForeName>Rodney T</ForeName>
<Initials>RT</Initials>
<AffiliationInfo>
<Affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moore</LastName>
<ForeName>John C</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Natural Resource Ecology Laboratory, Colorado State University Fort Collins, CO, USA ; Department of Ecosystem Science and Sustainability, Colorado State University Fort Collins, CO, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arctic tundra</Keyword>
<Keyword MajorTopicYN="N">bacteria</Keyword>
<Keyword MajorTopicYN="N">fertilization</Keyword>
<Keyword MajorTopicYN="N">fungi</Keyword>
<Keyword MajorTopicYN="N">mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">nitrogen</Keyword>
<Keyword MajorTopicYN="N">phosphorus</Keyword>
<Keyword MajorTopicYN="N">soil</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25324836</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2014.00516</ArticleId>
<ArticleId IdType="pmc">PMC4183186</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Oct;66(10):4356-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11010882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2001 Feb 7;268(1464):303-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11217902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Nov;137(3):399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12905060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Jun;140(1):113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15164284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 23;431(7007):406-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15385994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 23;431(7007):440-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15386009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Oct;71(10):5710-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16204479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Mar;87(3):563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Apr;87(4):816-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16676524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 1;441(7093):629-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16738658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(2):391-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16866945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2006 Sep;57(3):409-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16907755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2007 Feb;59(2):428-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17313585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 Sep;153(3):643-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17497180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Jun;88(6):1354-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2007 Aug;1(4):283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18043639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18440982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Sep 15;24(18):2098-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18678590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18695234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19004872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2009 Jan;55(1):84-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19190704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(2):e4390</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19194509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Jul;26(7):1641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 May;12(5):443-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19379138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Bioinform Online. 2007 Feb 17;2:121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19455206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Jan;4(1):17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19710709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 15;26(2):266-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19914921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Mar;13(3):394-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Jul;12(7):1842-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20236166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Oct;4(10):1340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20445636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Nov;12(11):2998-3006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2010 Aug;91(8):2213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20836442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 May;5(5):908-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21085198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2010 Dec;91(12):3463-70; discussion 3503-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21302816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jul;191(2):515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21463329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 May;6(5):1007-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22134642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Nov;82(2):303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e34842</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22511968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2012 Jul;93(7):1683-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22919914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2013 Feb;83(2):478-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22974374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23437159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 30;497(7451):615-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23676669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 28;8(6):e67884</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 15;8(10):e77212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Apr 24;508(7497):521-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24531763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Jan;105(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Feb;126(4):543-562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547240</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001688 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001688 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25324836
   |texte=   Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25324836" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020