Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm.

Identifieur interne : 001593 ( Main/Corpus ); précédent : 001592; suivant : 001594

Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm.

Auteurs : Eva Boon ; Sébastien Halary ; Eric Bapteste ; Mohamed Hijri

Source :

RBID : pubmed:25573960

English descriptors

Abstract

Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms.

DOI: 10.1093/gbe/evv002
PubMed: 25573960
PubMed Central: PMC4350173

Links to Exploration step

pubmed:25573960

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm.</title>
<author>
<name sortKey="Boon, Eva" sort="Boon, Eva" uniqKey="Boon E" first="Eva" last="Boon">Eva Boon</name>
<affiliation>
<nlm:affiliation>Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada eric.bapteste@snv.jussieu.fr mohamed.hijri@umontreal.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Halary, Sebastien" sort="Halary, Sebastien" uniqKey="Halary S" first="Sébastien" last="Halary">Sébastien Halary</name>
<affiliation>
<nlm:affiliation>Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bapteste, Eric" sort="Bapteste, Eric" uniqKey="Bapteste E" first="Eric" last="Bapteste">Eric Bapteste</name>
<affiliation>
<nlm:affiliation>CNRS, UMR7138, Institut de Biologie Paris-Seine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), Paris, France eric.bapteste@snv.jussieu.fr mohamed.hijri@umontreal.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
<affiliation>
<nlm:affiliation>Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada eric.bapteste@snv.jussieu.fr mohamed.hijri@umontreal.ca.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25573960</idno>
<idno type="pmid">25573960</idno>
<idno type="doi">10.1093/gbe/evv002</idno>
<idno type="pmc">PMC4350173</idno>
<idno type="wicri:Area/Main/Corpus">001593</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001593</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm.</title>
<author>
<name sortKey="Boon, Eva" sort="Boon, Eva" uniqKey="Boon E" first="Eva" last="Boon">Eva Boon</name>
<affiliation>
<nlm:affiliation>Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada eric.bapteste@snv.jussieu.fr mohamed.hijri@umontreal.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Halary, Sebastien" sort="Halary, Sebastien" uniqKey="Halary S" first="Sébastien" last="Halary">Sébastien Halary</name>
<affiliation>
<nlm:affiliation>Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bapteste, Eric" sort="Bapteste, Eric" uniqKey="Bapteste E" first="Eric" last="Bapteste">Eric Bapteste</name>
<affiliation>
<nlm:affiliation>CNRS, UMR7138, Institut de Biologie Paris-Seine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), Paris, France eric.bapteste@snv.jussieu.fr mohamed.hijri@umontreal.ca.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
<affiliation>
<nlm:affiliation>Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada eric.bapteste@snv.jussieu.fr mohamed.hijri@umontreal.ca.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genome biology and evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Cytoplasm (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Dosage (MeSH)</term>
<term>Genetic Markers (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genome Size (MeSH)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Glomeromycota (genetics)</term>
<term>Glomeromycota (isolation & purification)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Polymorphism, Genetic (MeSH)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Repetitive Sequences, Nucleic Acid (genetics)</term>
<term>Reproducibility of Results (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Genetic Markers</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cytoplasm</term>
<term>Glomeromycota</term>
<term>Mutation</term>
<term>Mycorrhizae</term>
<term>Repetitive Sequences, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Base Sequence</term>
<term>Cluster Analysis</term>
<term>Computer Simulation</term>
<term>Evolution, Molecular</term>
<term>Gene Dosage</term>
<term>Genetic Variation</term>
<term>Genome Size</term>
<term>Genome, Fungal</term>
<term>Molecular Sequence Annotation</term>
<term>Polymorphism, Genetic</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Reproducibility of Results</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25573960</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1759-6653</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Genome biology and evolution</Title>
<ISOAbbreviation>Genome Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm.</ArticleTitle>
<Pagination>
<MedlinePgn>505-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/gbe/evv002</ELocationID>
<Abstract>
<AbstractText>Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms.</AbstractText>
<CopyrightInformation>© The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Boon</LastName>
<ForeName>Eva</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada eric.bapteste@snv.jussieu.fr mohamed.hijri@umontreal.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Halary</LastName>
<ForeName>Sébastien</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bapteste</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>CNRS, UMR7138, Institut de Biologie Paris-Seine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), Paris, France eric.bapteste@snv.jussieu.fr mohamed.hijri@umontreal.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hijri</LastName>
<ForeName>Mohamed</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada eric.bapteste@snv.jussieu.fr mohamed.hijri@umontreal.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol Evol</MedlineTA>
<NlmUniqueID>101509707</NlmUniqueID>
<ISSNLinking>1759-6653</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018628" MajorTopicYN="N">Gene Dosage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059646" MajorTopicYN="N">Genome Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012091" MajorTopicYN="N">Repetitive Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">genome evolution</Keyword>
<Keyword MajorTopicYN="N">genome heterogeneity</Keyword>
<Keyword MajorTopicYN="N">network analysis</Keyword>
<Keyword MajorTopicYN="N">next generation sequencing</Keyword>
<Keyword MajorTopicYN="N">symbiosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25573960</ArticleId>
<ArticleId IdType="pii">evv002</ArticleId>
<ArticleId IdType="doi">10.1093/gbe/evv002</ArticleId>
<ArticleId IdType="pmc">PMC4350173</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Fungal Genet Biol. 2004 Feb;41(2):253-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14732270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(4):747-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19138232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009;9:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19146661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 May;77(10):3219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(12):e83301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24386173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2010 Jul;23(7):1519-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20492090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2001 Aug;87(Pt 2):243-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11703516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Aug;30(8):1975-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23666209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Dec;63(12):4645-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9406382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Jul;12(7):1889-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20236171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Apr;12(4):656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Feb 19;427(6976):733-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2013;13:146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23841456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Aug;20(6):415-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20082102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):924-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2011;3:950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Jan;42(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15588998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2011;11:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21349193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1997 Oct;22(2):103-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 May;20(5):754-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1985 Sep;111(1):147-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4029609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Dec 13;414(6865):745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Nov;38(20):e191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21276213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(7):R143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17659080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Jul 13;20(13):1216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20541408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 May;14(5):307-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23594909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2010;44:271-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20822441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):755-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Mar;21(3):494-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21212162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e27310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Dec;192(4):794-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(1):211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1999 Apr;14(4):152-155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 13;433(7022):E3-4; discussion E4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Jan;73(1):366-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biol. 2010 Dec;85(4):447-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21243964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jan;10(1):e1004078</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24415955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jun 1;25(11):1451-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2006 Dec 1;2(12):e173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17140285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Jan 8;226(1):61-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9889322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Apr;175(4):424-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20170364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Jun;24(6):1380-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17387100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Oct;13(10):3179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18841204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 15;23(10):1282-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2010;6(7):e1000844</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20628621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):127-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):652-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21166810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):49-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):E1594-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jun;21 Suppl 1:i351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):853-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22931497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2007 Aug;56(4):564-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17654362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Mar;14(3):743-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15723666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2008 Nov;83(4):621-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18947335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21592414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 19;443(7113):818-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17051209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 13;433(7022):160-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001593 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001593 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25573960
   |texte=   Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25573960" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020