Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Strong effect of climate on ectomycorrhizal fungal composition: evidence from range overlap between two mountains.

Identifieur interne : 001563 ( Main/Corpus ); précédent : 001562; suivant : 001564

Strong effect of climate on ectomycorrhizal fungal composition: evidence from range overlap between two mountains.

Auteurs : Yumiko Miyamoto ; Atsushi Sakai ; Masahira Hattori ; Kazuhide Nara

Source :

RBID : pubmed:25647348

English descriptors

Abstract

Separating the effects of environmental factors and spatial distance on microbial composition is difficult when these factors covary. We examined the composition of ectomycorrhizal (EM) fungi along elevation gradients on geographically distant mountains to clarify the effect of climate at the regional scale. Soil cores were collected from various forest types along an elevation gradient in southwestern Japan. Fungal species were identified by the internal transcribed spacer regions of the rDNA using direct sequencing. The occurrence of fungal species in this study was compared with a previous study conducted on a mountain separated by ∼550 km. In total, we recorded 454 EM fungi from 330 of 350 soil cores. Forty-seven fungal species (∼20% of the total excluding singletons) were shared between two mountains, mostly between similar forest types on both mountains. Variation partitioning in redundancy analysis revealed that climate explained the largest variance in EM fungal composition. The similarity of forest tree composition, which is usually determined by climatic conditions, was positively correlated with the similarity of the EM fungal composition. However, the lack of large host effects implied that communities of forest trees and EM fungi may be determined independently by climate. Our data provide important insights that host plants and mutualistic fungi may respond to climate change idiosyncratically, potentially altering carbon and nutrient cycles in relation to the plant-fungus associations.

DOI: 10.1038/ismej.2015.8
PubMed: 25647348
PubMed Central: PMC4511943

Links to Exploration step

pubmed:25647348

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Strong effect of climate on ectomycorrhizal fungal composition: evidence from range overlap between two mountains.</title>
<author>
<name sortKey="Miyamoto, Yumiko" sort="Miyamoto, Yumiko" uniqKey="Miyamoto Y" first="Yumiko" last="Miyamoto">Yumiko Miyamoto</name>
<affiliation>
<nlm:affiliation>Department of Natural Environmental Studies, The University of Tokyo, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sakai, Atsushi" sort="Sakai, Atsushi" uniqKey="Sakai A" first="Atsushi" last="Sakai">Atsushi Sakai</name>
<affiliation>
<nlm:affiliation>Forestry and Forest Products Research Institute, Kochi, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hattori, Masahira" sort="Hattori, Masahira" uniqKey="Hattori M" first="Masahira" last="Hattori">Masahira Hattori</name>
<affiliation>
<nlm:affiliation>Center for Omics and Bioinformatics, The University of Tokyo, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nara, Kazuhide" sort="Nara, Kazuhide" uniqKey="Nara K" first="Kazuhide" last="Nara">Kazuhide Nara</name>
<affiliation>
<nlm:affiliation>Department of Natural Environmental Studies, The University of Tokyo, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25647348</idno>
<idno type="pmid">25647348</idno>
<idno type="doi">10.1038/ismej.2015.8</idno>
<idno type="pmc">PMC4511943</idno>
<idno type="wicri:Area/Main/Corpus">001563</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001563</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Strong effect of climate on ectomycorrhizal fungal composition: evidence from range overlap between two mountains.</title>
<author>
<name sortKey="Miyamoto, Yumiko" sort="Miyamoto, Yumiko" uniqKey="Miyamoto Y" first="Yumiko" last="Miyamoto">Yumiko Miyamoto</name>
<affiliation>
<nlm:affiliation>Department of Natural Environmental Studies, The University of Tokyo, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sakai, Atsushi" sort="Sakai, Atsushi" uniqKey="Sakai A" first="Atsushi" last="Sakai">Atsushi Sakai</name>
<affiliation>
<nlm:affiliation>Forestry and Forest Products Research Institute, Kochi, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hattori, Masahira" sort="Hattori, Masahira" uniqKey="Hattori M" first="Masahira" last="Hattori">Masahira Hattori</name>
<affiliation>
<nlm:affiliation>Center for Omics and Bioinformatics, The University of Tokyo, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nara, Kazuhide" sort="Nara, Kazuhide" uniqKey="Nara K" first="Kazuhide" last="Nara">Kazuhide Nara</name>
<affiliation>
<nlm:affiliation>Department of Natural Environmental Studies, The University of Tokyo, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The ISME journal</title>
<idno type="eISSN">1751-7370</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Altitude (MeSH)</term>
<term>Biodiversity (MeSH)</term>
<term>Carbon (MeSH)</term>
<term>Climate Change (MeSH)</term>
<term>DNA, Fungal (analysis)</term>
<term>DNA, Ribosomal (analysis)</term>
<term>Forests (MeSH)</term>
<term>Japan (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Plants (microbiology)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Trees (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>DNA, Fungal</term>
<term>DNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Altitude</term>
<term>Biodiversity</term>
<term>Climate Change</term>
<term>Forests</term>
<term>Japan</term>
<term>Soil Microbiology</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Separating the effects of environmental factors and spatial distance on microbial composition is difficult when these factors covary. We examined the composition of ectomycorrhizal (EM) fungi along elevation gradients on geographically distant mountains to clarify the effect of climate at the regional scale. Soil cores were collected from various forest types along an elevation gradient in southwestern Japan. Fungal species were identified by the internal transcribed spacer regions of the rDNA using direct sequencing. The occurrence of fungal species in this study was compared with a previous study conducted on a mountain separated by ∼550 km. In total, we recorded 454 EM fungi from 330 of 350 soil cores. Forty-seven fungal species (∼20% of the total excluding singletons) were shared between two mountains, mostly between similar forest types on both mountains. Variation partitioning in redundancy analysis revealed that climate explained the largest variance in EM fungal composition. The similarity of forest tree composition, which is usually determined by climatic conditions, was positively correlated with the similarity of the EM fungal composition. However, the lack of large host effects implied that communities of forest trees and EM fungi may be determined independently by climate. Our data provide important insights that host plants and mutualistic fungi may respond to climate change idiosyncratically, potentially altering carbon and nutrient cycles in relation to the plant-fungus associations. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">25647348</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1751-7370</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>The ISME journal</Title>
<ISOAbbreviation>ISME J</ISOAbbreviation>
</Journal>
<ArticleTitle>Strong effect of climate on ectomycorrhizal fungal composition: evidence from range overlap between two mountains.</ArticleTitle>
<Pagination>
<MedlinePgn>1870-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ismej.2015.8</ELocationID>
<Abstract>
<AbstractText>Separating the effects of environmental factors and spatial distance on microbial composition is difficult when these factors covary. We examined the composition of ectomycorrhizal (EM) fungi along elevation gradients on geographically distant mountains to clarify the effect of climate at the regional scale. Soil cores were collected from various forest types along an elevation gradient in southwestern Japan. Fungal species were identified by the internal transcribed spacer regions of the rDNA using direct sequencing. The occurrence of fungal species in this study was compared with a previous study conducted on a mountain separated by ∼550 km. In total, we recorded 454 EM fungi from 330 of 350 soil cores. Forty-seven fungal species (∼20% of the total excluding singletons) were shared between two mountains, mostly between similar forest types on both mountains. Variation partitioning in redundancy analysis revealed that climate explained the largest variance in EM fungal composition. The similarity of forest tree composition, which is usually determined by climatic conditions, was positively correlated with the similarity of the EM fungal composition. However, the lack of large host effects implied that communities of forest trees and EM fungi may be determined independently by climate. Our data provide important insights that host plants and mutualistic fungi may respond to climate change idiosyncratically, potentially altering carbon and nutrient cycles in relation to the plant-fungus associations. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Miyamoto</LastName>
<ForeName>Yumiko</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Environmental Studies, The University of Tokyo, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sakai</LastName>
<ForeName>Atsushi</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Forestry and Forest Products Research Institute, Kochi, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hattori</LastName>
<ForeName>Masahira</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Center for Omics and Bioinformatics, The University of Tokyo, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nara</LastName>
<ForeName>Kazuhide</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Environmental Studies, The University of Tokyo, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>02</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>ISME J</MedlineTA>
<NlmUniqueID>101301086</NlmUniqueID>
<ISSNLinking>1751-7362</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004275">DNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000531" MajorTopicYN="N">Altitude</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="Y">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004275" MajorTopicYN="N">DNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007564" MajorTopicYN="N">Japan</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25647348</ArticleId>
<ArticleId IdType="pii">ismej20158</ArticleId>
<ArticleId IdType="doi">10.1038/ismej.2015.8</ArticleId>
<ArticleId IdType="pmc">PMC4511943</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecol Lett. 2013 May;16 Suppl 1:140-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23679013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Jun;17(12):2825-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18489549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Apr;166(1):263-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1444-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(2):250-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Oct;24(7):551-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24718965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Nov;23(8):641-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23702643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Sep;21(17):4160-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22568722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Feb;22(2):121-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21573837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(2):437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17888121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11505-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18695215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Apr;19(7):1469-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20456232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Mar;23(5):992-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24400823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(2):433-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26207269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jun;198(4):1239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23421531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Comp Biol. 2002 Apr;42(2):352-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jan;193(2):465-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):470-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Sep;13(9):1103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jun;166(3):1011-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15869659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2006 Oct;9(10):1127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16972876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2004 Aug 1;49(2):319-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2006 Feb;4(2):102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Jan;23(1):11-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22592855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Nov;17(5):1105-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1932684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Apr;20(4):217-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20191371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Sep;88(9):2280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17918406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Aug;8(8):1739-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24621523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jun;198(4):1228-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23496225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2008 Jul;9(4):286-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18372315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Sep;87(9):2278-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16995628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Aug;199(3):822-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23692134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Oct;21(20):5110-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22971047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Monit Assess. 2002 Aug;78(1):45-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12197640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(2):430-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Jun;19(6):1688-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23505218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Sep;7(9):1852-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23598789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(4):873-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631297</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001563 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001563 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25647348
   |texte=   Strong effect of climate on ectomycorrhizal fungal composition: evidence from range overlap between two mountains.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25647348" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020