Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula.

Identifieur interne : 001470 ( Main/Corpus ); précédent : 001469; suivant : 001471

Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula.

Auteurs : Stephanie J. Watts-Williams ; Iver Jakobsen ; Timothy R. Cavagnaro ; Mette Gr Nlund

Source :

RBID : pubmed:25944927

English descriptors

Abstract

Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with (33)P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake.

DOI: 10.1093/jxb/erv202
PubMed: 25944927
PubMed Central: PMC4473995

Links to Exploration step

pubmed:25944927

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula.</title>
<author>
<name sortKey="Watts Williams, Stephanie J" sort="Watts Williams, Stephanie J" uniqKey="Watts Williams S" first="Stephanie J" last="Watts-Williams">Stephanie J. Watts-Williams</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia. Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. sjw266@cornell.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jakobsen, Iver" sort="Jakobsen, Iver" uniqKey="Jakobsen I" first="Iver" last="Jakobsen">Iver Jakobsen</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cavagnaro, Timothy R" sort="Cavagnaro, Timothy R" uniqKey="Cavagnaro T" first="Timothy R" last="Cavagnaro">Timothy R. Cavagnaro</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gr Nlund, Mette" sort="Gr Nlund, Mette" uniqKey="Gr Nlund M" first="Mette" last="Gr Nlund">Mette Gr Nlund</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25944927</idno>
<idno type="pmid">25944927</idno>
<idno type="doi">10.1093/jxb/erv202</idno>
<idno type="pmc">PMC4473995</idno>
<idno type="wicri:Area/Main/Corpus">001470</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001470</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula.</title>
<author>
<name sortKey="Watts Williams, Stephanie J" sort="Watts Williams, Stephanie J" uniqKey="Watts Williams S" first="Stephanie J" last="Watts-Williams">Stephanie J. Watts-Williams</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia. Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. sjw266@cornell.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jakobsen, Iver" sort="Jakobsen, Iver" uniqKey="Jakobsen I" first="Iver" last="Jakobsen">Iver Jakobsen</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cavagnaro, Timothy R" sort="Cavagnaro, Timothy R" uniqKey="Cavagnaro T" first="Timothy R" last="Cavagnaro">Timothy R. Cavagnaro</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gr Nlund, Mette" sort="Gr Nlund, Mette" uniqKey="Gr Nlund M" first="Mette" last="Gr Nlund">Mette Gr Nlund</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Colony Count, Microbial (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Hyphae (drug effects)</term>
<term>Hyphae (physiology)</term>
<term>Medicago truncatula (drug effects)</term>
<term>Medicago truncatula (growth & development)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phosphorus (metabolism)</term>
<term>Phosphorus (pharmacology)</term>
<term>Plant Proteins (metabolism)</term>
<term>Soil (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphorus</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Hyphae</term>
<term>Medicago truncatula</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Hyphae</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Colony Count, Microbial</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with (33)P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25944927</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>66</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula.</ArticleTitle>
<Pagination>
<MedlinePgn>4061-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erv202</ELocationID>
<Abstract>
<AbstractText>Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with (33)P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake. </AbstractText>
<CopyrightInformation>© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Watts-Williams</LastName>
<ForeName>Stephanie J</ForeName>
<Initials>SJ</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-7359-8440</Identifier>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia. Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. sjw266@cornell.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jakobsen</LastName>
<ForeName>Iver</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cavagnaro</LastName>
<ForeName>Timothy R</ForeName>
<Initials>TR</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grønlund</LastName>
<ForeName>Mette</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015169" MajorTopicYN="N">Colony Count, Microbial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal (AM) fungi</Keyword>
<Keyword MajorTopicYN="N">Medicago truncatula</Keyword>
<Keyword MajorTopicYN="N">Pi transporters</Keyword>
<Keyword MajorTopicYN="N">colonized root patch</Keyword>
<Keyword MajorTopicYN="N">direct pathway uptake (DPU)</Keyword>
<Keyword MajorTopicYN="N">mtpt4-mutant</Keyword>
<Keyword MajorTopicYN="N">resource allocation</Keyword>
<Keyword MajorTopicYN="N">soil P level.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25944927</ArticleId>
<ArticleId IdType="pii">erv202</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erv202</ArticleId>
<ArticleId IdType="pmc">PMC4473995</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Jul;23(7):915-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20521954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Jul;8(4):439-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16917979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:95-123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24579991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 5;283(36):24673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(4):688-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1998 Jan;11(1):14-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Apr;229(5):1023-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19169704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Oct 8;461(7265):716-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Dec;68(6):954-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(3):1049-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Sep;63(9):3531-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):1002-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1979 Nov 15;100(1):95-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">161695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Dec;184(4):962-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19754635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Nov;168(2):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(1):11-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1998 Aug 17;216(1):47-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9714729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 May;75(1):26-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Dec;24(5):559-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11123795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 May;34(2):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9207836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):938-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Feb 1;116(2):447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):950-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:665-693</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Feb;25(3):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Jun;37(6):1382-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24236504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:19-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):347-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jan;116(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9449838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Feb;55(396):285-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Mar;3(2):288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20142416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(1):229-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23738787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Aug;16(8):442-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21684794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2013 Oct;149(2):234-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23387980</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001470 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001470 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25944927
   |texte=   Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25944927" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020