Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration.

Identifieur interne : 001436 ( Main/Corpus ); précédent : 001435; suivant : 001437

Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration.

Auteurs : Ramasamy Krishnamoorthy ; Chang-Gi Kim ; Parthiban Subramanian ; Ki-Yoon Kim ; Gopal Selvakumar ; Tong-Min Sa

Source :

RBID : pubmed:26035444

English descriptors

Abstract

Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity.

DOI: 10.1371/journal.pone.0128784
PubMed: 26035444
PubMed Central: PMC4452772

Links to Exploration step

pubmed:26035444

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration.</title>
<author>
<name sortKey="Krishnamoorthy, Ramasamy" sort="Krishnamoorthy, Ramasamy" uniqKey="Krishnamoorthy R" first="Ramasamy" last="Krishnamoorthy">Ramasamy Krishnamoorthy</name>
<affiliation>
<nlm:affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Chang Gi" sort="Kim, Chang Gi" uniqKey="Kim C" first="Chang-Gi" last="Kim">Chang-Gi Kim</name>
<affiliation>
<nlm:affiliation>Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Subramanian, Parthiban" sort="Subramanian, Parthiban" uniqKey="Subramanian P" first="Parthiban" last="Subramanian">Parthiban Subramanian</name>
<affiliation>
<nlm:affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Ki Yoon" sort="Kim, Ki Yoon" uniqKey="Kim K" first="Ki-Yoon" last="Kim">Ki-Yoon Kim</name>
<affiliation>
<nlm:affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Selvakumar, Gopal" sort="Selvakumar, Gopal" uniqKey="Selvakumar G" first="Gopal" last="Selvakumar">Gopal Selvakumar</name>
<affiliation>
<nlm:affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sa, Tong Min" sort="Sa, Tong Min" uniqKey="Sa T" first="Tong-Min" last="Sa">Tong-Min Sa</name>
<affiliation>
<nlm:affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26035444</idno>
<idno type="pmid">26035444</idno>
<idno type="doi">10.1371/journal.pone.0128784</idno>
<idno type="pmc">PMC4452772</idno>
<idno type="wicri:Area/Main/Corpus">001436</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001436</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration.</title>
<author>
<name sortKey="Krishnamoorthy, Ramasamy" sort="Krishnamoorthy, Ramasamy" uniqKey="Krishnamoorthy R" first="Ramasamy" last="Krishnamoorthy">Ramasamy Krishnamoorthy</name>
<affiliation>
<nlm:affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Chang Gi" sort="Kim, Chang Gi" uniqKey="Kim C" first="Chang-Gi" last="Kim">Chang-Gi Kim</name>
<affiliation>
<nlm:affiliation>Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Subramanian, Parthiban" sort="Subramanian, Parthiban" uniqKey="Subramanian P" first="Parthiban" last="Subramanian">Parthiban Subramanian</name>
<affiliation>
<nlm:affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Ki Yoon" sort="Kim, Ki Yoon" uniqKey="Kim K" first="Ki-Yoon" last="Kim">Ki-Yoon Kim</name>
<affiliation>
<nlm:affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Selvakumar, Gopal" sort="Selvakumar, Gopal" uniqKey="Selvakumar G" first="Gopal" last="Selvakumar">Gopal Selvakumar</name>
<affiliation>
<nlm:affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sa, Tong Min" sort="Sa, Tong Min" uniqKey="Sa T" first="Tong-Min" last="Sa">Tong-Min Sa</name>
<affiliation>
<nlm:affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodiversity (MeSH)</term>
<term>Denaturing Gradient Gel Electrophoresis (MeSH)</term>
<term>Metalloids (analysis)</term>
<term>Metals, Heavy (analysis)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Polymorphism, Restriction Fragment Length (MeSH)</term>
<term>Population Density (MeSH)</term>
<term>Republic of Korea (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (analysis)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Metalloids</term>
<term>Metals, Heavy</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Republic of Korea</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Denaturing Gradient Gel Electrophoresis</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Population Density</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26035444</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration.</ArticleTitle>
<Pagination>
<MedlinePgn>e0128784</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0128784</ELocationID>
<Abstract>
<AbstractText>Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Krishnamoorthy</LastName>
<ForeName>Ramasamy</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Chang-Gi</ForeName>
<Initials>CG</Initials>
<AffiliationInfo>
<Affiliation>Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Subramanian</LastName>
<ForeName>Parthiban</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Ki-Yoon</ForeName>
<Initials>KY</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Selvakumar</LastName>
<ForeName>Gopal</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sa</LastName>
<ForeName>Tong-Min</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058955">Metalloids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058645" MajorTopicYN="N">Denaturing Gradient Gel Electrophoresis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058955" MajorTopicYN="N">Metalloids</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="N">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011156" MajorTopicYN="N">Population Density</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056910" MajorTopicYN="N" Type="Geographic">Republic of Korea</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26035444</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0128784</ArticleId>
<ArticleId IdType="pii">PONE-D-14-49327</ArticleId>
<ArticleId IdType="pmc">PMC4452772</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2013 Oct;23(7):515-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Jun;8(6):971-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16689718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2004 Apr;14(2):111-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12768382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2012 Jan;88(1):14-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22015816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Jun;17(4):259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17429700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2008 Nov;156(1):215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18280625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2010 Jul;16(3):259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5276-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 May;223(6):1115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16555102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2008 Dec;156(3):1277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2007 May;53(4):562-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2009 Jan 30;161(2-3):1288-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18554782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2008 Jan;8(1):95-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21585725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 May;21(10):2341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22439851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2004 Dec 15;241(2):265-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15598542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):970-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2013 Nov 15;262:1105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23102714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci (China). 2015 Mar 1;29:18-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Jun 5;46(11):5764-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22582875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2015 Jan;22(1):598-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25091168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 1994;86(2):181-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15091635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2015 Mar;113:391-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25540851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Nov;21(8):681-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21455754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2465-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2010 Aug;158(8):2757-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20546984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 May;135(2):255-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IMA Fungus. 2011 Dec;2(2):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22679604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 Aug;20(16):3469-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21668808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jul 30;394(6692):431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9697763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Feb;65(2):718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9925606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Mar 15;171(6):421-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24594394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Nov;70(11):6643-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15528529</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001436 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001436 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26035444
   |texte=   Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26035444" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020