Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management.

Identifieur interne : 001418 ( Main/Corpus ); précédent : 001417; suivant : 001419

Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management.

Auteurs : Paul Gosling ; Julie Jones ; Gary D. Bending

Source :

RBID : pubmed:26100128

English descriptors

Abstract

Arbuscular mycorrhizal (AM) fungi provide benefits to host plants and show functional diversity, with evidence of functional trait conservation at the family level. Diverse communities of AM fungi ought therefore to provide increased benefits to the host, with implications for the management of sustainable agroecosystems. However, this is often not evident in the literature, with diversity saturation at low species number. Growth and nutrient uptake were measured in onions in the glasshouse on AM-free phosphorus (P)-poor soil, inoculated with between one and seven species of AM fungi in all possible combinations. Inoculation with AM fungi increased shoot dry weight as well as P and copper concentrations in shoots but reduced the concentration of potassium and sulphur. There was little evidence of increased benefit from high AM fungal diversity, and increasing diversity beyond three species did not result in significantly higher shoot weight or P or Cu concentrations. Species of Glomeraceae had the greatest impact on growth and nutrient uptake, while species of Acaulospora and Racocetra did not have a significant impact. Failure to show a benefit from high AM fungal diversity in this and other studies may be the result of experimental conditions, with the benefits of AM fungal diversity only becoming apparent when the host plant is faced with multiple stress factors. Replicating the complex interactions between AM fungi, the host plant and their environment in the laboratory in order to fully understand these interactions is a major challenge to AM research.

DOI: 10.1007/s00572-015-0651-6
PubMed: 26100128

Links to Exploration step

pubmed:26100128

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management.</title>
<author>
<name sortKey="Gosling, Paul" sort="Gosling, Paul" uniqKey="Gosling P" first="Paul" last="Gosling">Paul Gosling</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. Paul.Gosling@ahdb.org.uk.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>AHDB, Stoneleigh Park, Kenilworth, Warwickshire, CV8 2TL, UK. Paul.Gosling@ahdb.org.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jones, Julie" sort="Jones, Julie" uniqKey="Jones J" first="Julie" last="Jones">Julie Jones</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bending, Gary D" sort="Bending, Gary D" uniqKey="Bending G" first="Gary D" last="Bending">Gary D. Bending</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26100128</idno>
<idno type="pmid">26100128</idno>
<idno type="doi">10.1007/s00572-015-0651-6</idno>
<idno type="wicri:Area/Main/Corpus">001418</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001418</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management.</title>
<author>
<name sortKey="Gosling, Paul" sort="Gosling, Paul" uniqKey="Gosling P" first="Paul" last="Gosling">Paul Gosling</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. Paul.Gosling@ahdb.org.uk.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>AHDB, Stoneleigh Park, Kenilworth, Warwickshire, CV8 2TL, UK. Paul.Gosling@ahdb.org.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jones, Julie" sort="Jones, Julie" uniqKey="Jones J" first="Julie" last="Jones">Julie Jones</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bending, Gary D" sort="Bending, Gary D" uniqKey="Bending G" first="Gary D" last="Bending">Gary D. Bending</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (methods)</term>
<term>Biodiversity (MeSH)</term>
<term>Copper (metabolism)</term>
<term>Crops, Agricultural (growth & development)</term>
<term>Crops, Agricultural (metabolism)</term>
<term>Crops, Agricultural (microbiology)</term>
<term>Ecosystem (MeSH)</term>
<term>England (MeSH)</term>
<term>Glomeromycota (growth & development)</term>
<term>Glomeromycota (metabolism)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Onions (growth & development)</term>
<term>Onions (metabolism)</term>
<term>Onions (microbiology)</term>
<term>Phosphorus (metabolism)</term>
<term>Plant Roots (chemistry)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Shoots (chemistry)</term>
<term>Plant Shoots (growth & development)</term>
<term>Plant Shoots (microbiology)</term>
<term>Potassium (metabolism)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Copper</term>
<term>Phosphorus</term>
<term>Potassium</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Crops, Agricultural</term>
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Onions</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Crops, Agricultural</term>
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Onions</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Agriculture</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Crops, Agricultural</term>
<term>Onions</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Ecosystem</term>
<term>England</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal (AM) fungi provide benefits to host plants and show functional diversity, with evidence of functional trait conservation at the family level. Diverse communities of AM fungi ought therefore to provide increased benefits to the host, with implications for the management of sustainable agroecosystems. However, this is often not evident in the literature, with diversity saturation at low species number. Growth and nutrient uptake were measured in onions in the glasshouse on AM-free phosphorus (P)-poor soil, inoculated with between one and seven species of AM fungi in all possible combinations. Inoculation with AM fungi increased shoot dry weight as well as P and copper concentrations in shoots but reduced the concentration of potassium and sulphur. There was little evidence of increased benefit from high AM fungal diversity, and increasing diversity beyond three species did not result in significantly higher shoot weight or P or Cu concentrations. Species of Glomeraceae had the greatest impact on growth and nutrient uptake, while species of Acaulospora and Racocetra did not have a significant impact. Failure to show a benefit from high AM fungal diversity in this and other studies may be the result of experimental conditions, with the benefits of AM fungal diversity only becoming apparent when the host plant is faced with multiple stress factors. Replicating the complex interactions between AM fungi, the host plant and their environment in the laboratory in order to fully understand these interactions is a major challenge to AM research. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26100128</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>10</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management.</ArticleTitle>
<Pagination>
<MedlinePgn>77-83</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-015-0651-6</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal (AM) fungi provide benefits to host plants and show functional diversity, with evidence of functional trait conservation at the family level. Diverse communities of AM fungi ought therefore to provide increased benefits to the host, with implications for the management of sustainable agroecosystems. However, this is often not evident in the literature, with diversity saturation at low species number. Growth and nutrient uptake were measured in onions in the glasshouse on AM-free phosphorus (P)-poor soil, inoculated with between one and seven species of AM fungi in all possible combinations. Inoculation with AM fungi increased shoot dry weight as well as P and copper concentrations in shoots but reduced the concentration of potassium and sulphur. There was little evidence of increased benefit from high AM fungal diversity, and increasing diversity beyond three species did not result in significantly higher shoot weight or P or Cu concentrations. Species of Glomeraceae had the greatest impact on growth and nutrient uptake, while species of Acaulospora and Racocetra did not have a significant impact. Failure to show a benefit from high AM fungal diversity in this and other studies may be the result of experimental conditions, with the benefits of AM fungal diversity only becoming apparent when the host plant is faced with multiple stress factors. Replicating the complex interactions between AM fungi, the host plant and their environment in the laboratory in order to fully understand these interactions is a major challenge to AM research. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gosling</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. Paul.Gosling@ahdb.org.uk.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>AHDB, Stoneleigh Park, Kenilworth, Warwickshire, CV8 2TL, UK. Paul.Gosling@ahdb.org.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>Julie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bending</LastName>
<ForeName>Gary D</ForeName>
<Initials>GD</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018556" MajorTopicYN="N">Crops, Agricultural</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004739" MajorTopicYN="N">England</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019697" MajorTopicYN="N">Onions</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">Fungal diversity</Keyword>
<Keyword MajorTopicYN="N">Onion</Keyword>
<Keyword MajorTopicYN="N">Phosphorus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26100128</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-015-0651-6</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-015-0651-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2007 Jul 12;448(7150):188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17625564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Oct;23(7):515-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Mar;138(4):574-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14714172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Jan;88(1):210-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17489469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Aug;23(6):507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23467773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Nov;7(11):2137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23823490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2015 May;9(5):1053-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25350159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25645714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15640357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Jan;24(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23715868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Jan;13(1):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20840583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(3):554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2009 Dec 7;276(1676):4237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19740877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Jul;15(8):2277-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16780440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25645715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2010 Sep;3(5-6):547-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):424-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 22;316(5832):1746-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17588930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(2):546-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23421495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Dec;18(1):51-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Jun;19(5):317-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19301039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(3):779-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jul 30;394(6692):431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9697763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2014 Apr;95(4):833-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24933804</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001418 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001418 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26100128
   |texte=   Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26100128" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020