Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

Identifieur interne : 001412 ( Main/Corpus ); précédent : 001411; suivant : 001413

Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

Auteurs : Junli Hu ; Anna Yang ; Anning Zhu ; Junhua Wang ; Jue Dai ; Ming Hung Wong ; Xiangui Lin

Source :

RBID : pubmed:26115994

English descriptors

Abstract

Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at the wheat maturation stage. Our results also demonstrated that NT resulted in the positive protection of the community structure of AM fungi and played an important role in maintaining their functionality especially for maize seedlings.

DOI: 10.1007/s12275-015-5108-2
PubMed: 26115994

Links to Exploration step

pubmed:26115994

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.</title>
<author>
<name sortKey="Hu, Junli" sort="Hu, Junli" uniqKey="Hu J" first="Junli" last="Hu">Junli Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Anna" sort="Yang, Anna" uniqKey="Yang A" first="Anna" last="Yang">Anna Yang</name>
</author>
<author>
<name sortKey="Zhu, Anning" sort="Zhu, Anning" uniqKey="Zhu A" first="Anning" last="Zhu">Anning Zhu</name>
</author>
<author>
<name sortKey="Wang, Junhua" sort="Wang, Junhua" uniqKey="Wang J" first="Junhua" last="Wang">Junhua Wang</name>
</author>
<author>
<name sortKey="Dai, Jue" sort="Dai, Jue" uniqKey="Dai J" first="Jue" last="Dai">Jue Dai</name>
</author>
<author>
<name sortKey="Wong, Ming Hung" sort="Wong, Ming Hung" uniqKey="Wong M" first="Ming Hung" last="Wong">Ming Hung Wong</name>
</author>
<author>
<name sortKey="Lin, Xiangui" sort="Lin, Xiangui" uniqKey="Lin X" first="Xiangui" last="Lin">Xiangui Lin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26115994</idno>
<idno type="pmid">26115994</idno>
<idno type="doi">10.1007/s12275-015-5108-2</idno>
<idno type="wicri:Area/Main/Corpus">001412</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001412</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.</title>
<author>
<name sortKey="Hu, Junli" sort="Hu, Junli" uniqKey="Hu J" first="Junli" last="Hu">Junli Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Anna" sort="Yang, Anna" uniqKey="Yang A" first="Anna" last="Yang">Anna Yang</name>
</author>
<author>
<name sortKey="Zhu, Anning" sort="Zhu, Anning" uniqKey="Zhu A" first="Anning" last="Zhu">Anning Zhu</name>
</author>
<author>
<name sortKey="Wang, Junhua" sort="Wang, Junhua" uniqKey="Wang J" first="Junhua" last="Wang">Junhua Wang</name>
</author>
<author>
<name sortKey="Dai, Jue" sort="Dai, Jue" uniqKey="Dai J" first="Jue" last="Dai">Jue Dai</name>
</author>
<author>
<name sortKey="Wong, Ming Hung" sort="Wong, Ming Hung" uniqKey="Wong M" first="Ming Hung" last="Wong">Ming Hung Wong</name>
</author>
<author>
<name sortKey="Lin, Xiangui" sort="Lin, Xiangui" uniqKey="Lin X" first="Xiangui" last="Lin">Xiangui Lin</name>
</author>
</analytic>
<series>
<title level="j">Journal of microbiology (Seoul, Korea)</title>
<idno type="eISSN">1976-3794</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (methods)</term>
<term>Alkaline Phosphatase (metabolism)</term>
<term>Biodiversity (MeSH)</term>
<term>China (MeSH)</term>
<term>Crops, Agricultural (growth & development)</term>
<term>Crops, Agricultural (microbiology)</term>
<term>Mycorrhizae (enzymology)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phosphorus (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Spores, Fungal (isolation & purification)</term>
<term>Time Factors (MeSH)</term>
<term>Triticum (growth & development)</term>
<term>Triticum (microbiology)</term>
<term>Zea mays (growth & development)</term>
<term>Zea mays (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkaline Phosphatase</term>
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Crops, Agricultural</term>
<term>Mycorrhizae</term>
<term>Triticum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Agriculture</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Crops, Agricultural</term>
<term>Plant Roots</term>
<term>Triticum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>China</term>
<term>Soil Microbiology</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at the wheat maturation stage. Our results also demonstrated that NT resulted in the positive protection of the community structure of AM fungi and played an important role in maintaining their functionality especially for maize seedlings. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26115994</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1976-3794</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>53</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of microbiology (Seoul, Korea)</Title>
<ISOAbbreviation>J Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.</ArticleTitle>
<Pagination>
<MedlinePgn>454-61</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12275-015-5108-2</ELocationID>
<Abstract>
<AbstractText>Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at the wheat maturation stage. Our results also demonstrated that NT resulted in the positive protection of the community structure of AM fungi and played an important role in maintaining their functionality especially for maize seedlings. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Junli</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Anning</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Junhua</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dai</LastName>
<ForeName>Jue</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Ming Hung</ForeName>
<Initials>MH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Xiangui</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Korea (South)</Country>
<MedlineTA>J Microbiol</MedlineTA>
<NlmUniqueID>9703165</NlmUniqueID>
<ISSNLinking>1225-8873</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.1</RegistryNumber>
<NameOfSubstance UI="D000469">Alkaline Phosphatase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000469" MajorTopicYN="N">Alkaline Phosphatase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018556" MajorTopicYN="N">Crops, Agricultural</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26115994</ArticleId>
<ArticleId IdType="doi">10.1007/s12275-015-5108-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2003 Apr;13(2):93-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):970-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2013 Jun;51(3):295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23812808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2012 Apr;28(4):1797-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22805962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IMA Fungus. 2011 Dec;2(2):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22679604</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001412 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001412 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26115994
   |texte=   Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26115994" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020