Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.

Identifieur interne : 001402 ( Main/Corpus ); précédent : 001401; suivant : 001403

Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.

Auteurs : Xiancan Zhu ; Fengbin Song ; Shengqun Liu ; Fulai Liu

Source :

RBID : pubmed:26148451

English descriptors

Abstract

Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.

DOI: 10.1007/s00572-015-0654-3
PubMed: 26148451

Links to Exploration step

pubmed:26148451

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.</title>
<author>
<name sortKey="Zhu, Xiancan" sort="Zhu, Xiancan" uniqKey="Zhu X" first="Xiancan" last="Zhu">Xiancan Zhu</name>
<affiliation>
<nlm:affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, DK-2630, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Fengbin" sort="Song, Fengbin" uniqKey="Song F" first="Fengbin" last="Song">Fengbin Song</name>
<affiliation>
<nlm:affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shengqun" sort="Liu, Shengqun" uniqKey="Liu S" first="Shengqun" last="Liu">Shengqun Liu</name>
<affiliation>
<nlm:affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Fulai" sort="Liu, Fulai" uniqKey="Liu F" first="Fulai" last="Liu">Fulai Liu</name>
<affiliation>
<nlm:affiliation>Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, DK-2630, Denmark. fl@plen.ku.dk.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26148451</idno>
<idno type="pmid">26148451</idno>
<idno type="doi">10.1007/s00572-015-0654-3</idno>
<idno type="wicri:Area/Main/Corpus">001402</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001402</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.</title>
<author>
<name sortKey="Zhu, Xiancan" sort="Zhu, Xiancan" uniqKey="Zhu X" first="Xiancan" last="Zhu">Xiancan Zhu</name>
<affiliation>
<nlm:affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, DK-2630, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Fengbin" sort="Song, Fengbin" uniqKey="Song F" first="Fengbin" last="Song">Fengbin Song</name>
<affiliation>
<nlm:affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shengqun" sort="Liu, Shengqun" uniqKey="Liu S" first="Shengqun" last="Liu">Shengqun Liu</name>
<affiliation>
<nlm:affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Fulai" sort="Liu, Fulai" uniqKey="Liu F" first="Fulai" last="Liu">Fulai Liu</name>
<affiliation>
<nlm:affiliation>Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, DK-2630, Denmark. fl@plen.ku.dk.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Carbon (analysis)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Glomeromycota (drug effects)</term>
<term>Glomeromycota (physiology)</term>
<term>Isotope Labeling (MeSH)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Symbiosis (drug effects)</term>
<term>Triticum (growth & development)</term>
<term>Triticum (metabolism)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Isotope Labeling</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26148451</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.</ArticleTitle>
<Pagination>
<MedlinePgn>133-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-015-0654-3</ELocationID>
<Abstract>
<AbstractText>Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Xiancan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, DK-2630, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Fengbin</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Shengqun</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Fulai</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, DK-2630, Denmark. fl@plen.ku.dk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007553" MajorTopicYN="N">Isotope Labeling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">15N recovery rate</Keyword>
<Keyword MajorTopicYN="N">Arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">C/N accumulation</Keyword>
<Keyword MajorTopicYN="N">C/N partitioning</Keyword>
<Keyword MajorTopicYN="N">Nitrogen use efficiency</Keyword>
<Keyword MajorTopicYN="N">Triticum aestivum L</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26148451</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-015-0654-3</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-015-0654-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2012 Aug 31;337(6098):1084-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2015 May;17(3):647-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25353972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Oct;71:87-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23896605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Mar;8(3):714-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24108327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1980 Apr;26(4):536-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6155191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Aug;73(2):197-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20528987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10938-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Feb;165(2):351-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:609-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):635-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Nov;20(8):519-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20697748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Nov;51(352):1931-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11113171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Nov 15;171(18):1774-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25240322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Aug;167(2):531-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001402 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001402 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26148451
   |texte=   Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26148451" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020