Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata L.) Depend on Plant Mycorrhizal Status.

Identifieur interne : 001285 ( Main/Corpus ); précédent : 001284; suivant : 001286

Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata L.) Depend on Plant Mycorrhizal Status.

Auteurs : Minggang Wang ; T Martijn Bezemer ; Wim H. Van Der Putten ; Arjen Biere

Source :

RBID : pubmed:26552915

English descriptors

Abstract

Plants often are exposed to antagonistic and symbiotic organisms both aboveground and belowground. Interactions between above- and belowground organisms may occur either simultaneously or sequentially, and jointly can determine plant responses to future enemies. However, little is known about time-dependency of such aboveground-belowground interactions. We examined how the timing of a 24 h period of aboveground herbivory by Spodoptera exigua (1-8 d prior to later arriving conspecifics) influenced the response of Plantago lanceolata and the performance of later arriving conspecifics. We also examined whether these induced responses were modulated by the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae. The amount of leaf area consumed by later arriving herbivores decreased with time after induction by early herbivores. Mycorrhizal infection reduced the relative growth rate (RGR) of later arriving herbivores, associated with a reduction in efficiency of conversion of ingested food rather than a reduction in relative consumption rates. In non-mycorrhizal plants, leaf concentrations of the defense compound catalpol showed a linear two-fold increase during the eight days following early herbivory. By contrast, mycorrhizal plants already had elevated levels of leaf catalpol prior to their exposure to early herbivory and did not show any further increase following herbivory. These results indicate that AMF resulted in a systemic induction, rather than priming of these defenses. AMF infection significantly reduced shoot biomass of Plantago lanceolata. We conclude that plant responses to future herbivores are not only influenced by exposure to prior aboveground and belowground organisms, but also by when these prior organisms arrive and interact.

DOI: 10.1007/s10886-015-0644-0
PubMed: 26552915
PubMed Central: PMC4670619

Links to Exploration step

pubmed:26552915

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata L.) Depend on Plant Mycorrhizal Status.</title>
<author>
<name sortKey="Wang, Minggang" sort="Wang, Minggang" uniqKey="Wang M" first="Minggang" last="Wang">Minggang Wang</name>
<affiliation>
<nlm:affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands. m.wang@nioo.knaw.nl.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bezemer, T Martijn" sort="Bezemer, T Martijn" uniqKey="Bezemer T" first="T Martijn" last="Bezemer">T Martijn Bezemer</name>
<affiliation>
<nlm:affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Der Putten, Wim H" sort="Van Der Putten, Wim H" uniqKey="Van Der Putten W" first="Wim H" last="Van Der Putten">Wim H. Van Der Putten</name>
<affiliation>
<nlm:affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratory of Nematology, Wageningen University, P.O. Box 8132, 6700 ES, Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Biere, Arjen" sort="Biere, Arjen" uniqKey="Biere A" first="Arjen" last="Biere">Arjen Biere</name>
<affiliation>
<nlm:affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26552915</idno>
<idno type="pmid">26552915</idno>
<idno type="doi">10.1007/s10886-015-0644-0</idno>
<idno type="pmc">PMC4670619</idno>
<idno type="wicri:Area/Main/Corpus">001285</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001285</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata L.) Depend on Plant Mycorrhizal Status.</title>
<author>
<name sortKey="Wang, Minggang" sort="Wang, Minggang" uniqKey="Wang M" first="Minggang" last="Wang">Minggang Wang</name>
<affiliation>
<nlm:affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands. m.wang@nioo.knaw.nl.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bezemer, T Martijn" sort="Bezemer, T Martijn" uniqKey="Bezemer T" first="T Martijn" last="Bezemer">T Martijn Bezemer</name>
<affiliation>
<nlm:affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Der Putten, Wim H" sort="Van Der Putten, Wim H" uniqKey="Van Der Putten W" first="Wim H" last="Van Der Putten">Wim H. Van Der Putten</name>
<affiliation>
<nlm:affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratory of Nematology, Wageningen University, P.O. Box 8132, 6700 ES, Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Biere, Arjen" sort="Biere, Arjen" uniqKey="Biere A" first="Arjen" last="Biere">Arjen Biere</name>
<affiliation>
<nlm:affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Glomeromycota (physiology)</term>
<term>Herbivory (MeSH)</term>
<term>Larva (growth & development)</term>
<term>Larva (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plantago (microbiology)</term>
<term>Plantago (physiology)</term>
<term>Spodoptera (growth & development)</term>
<term>Spodoptera (physiology)</term>
<term>Symbiosis (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Larva</term>
<term>Spodoptera</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plantago</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Larva</term>
<term>Mycorrhizae</term>
<term>Plantago</term>
<term>Spodoptera</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biomass</term>
<term>Herbivory</term>
<term>Symbiosis</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants often are exposed to antagonistic and symbiotic organisms both aboveground and belowground. Interactions between above- and belowground organisms may occur either simultaneously or sequentially, and jointly can determine plant responses to future enemies. However, little is known about time-dependency of such aboveground-belowground interactions. We examined how the timing of a 24 h period of aboveground herbivory by Spodoptera exigua (1-8 d prior to later arriving conspecifics) influenced the response of Plantago lanceolata and the performance of later arriving conspecifics. We also examined whether these induced responses were modulated by the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae. The amount of leaf area consumed by later arriving herbivores decreased with time after induction by early herbivores. Mycorrhizal infection reduced the relative growth rate (RGR) of later arriving herbivores, associated with a reduction in efficiency of conversion of ingested food rather than a reduction in relative consumption rates. In non-mycorrhizal plants, leaf concentrations of the defense compound catalpol showed a linear two-fold increase during the eight days following early herbivory. By contrast, mycorrhizal plants already had elevated levels of leaf catalpol prior to their exposure to early herbivory and did not show any further increase following herbivory. These results indicate that AMF resulted in a systemic induction, rather than priming of these defenses. AMF infection significantly reduced shoot biomass of Plantago lanceolata. We conclude that plant responses to future herbivores are not only influenced by exposure to prior aboveground and belowground organisms, but also by when these prior organisms arrive and interact.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26552915</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>41</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata L.) Depend on Plant Mycorrhizal Status.</ArticleTitle>
<Pagination>
<MedlinePgn>1006-17</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-015-0644-0</ELocationID>
<Abstract>
<AbstractText>Plants often are exposed to antagonistic and symbiotic organisms both aboveground and belowground. Interactions between above- and belowground organisms may occur either simultaneously or sequentially, and jointly can determine plant responses to future enemies. However, little is known about time-dependency of such aboveground-belowground interactions. We examined how the timing of a 24 h period of aboveground herbivory by Spodoptera exigua (1-8 d prior to later arriving conspecifics) influenced the response of Plantago lanceolata and the performance of later arriving conspecifics. We also examined whether these induced responses were modulated by the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae. The amount of leaf area consumed by later arriving herbivores decreased with time after induction by early herbivores. Mycorrhizal infection reduced the relative growth rate (RGR) of later arriving herbivores, associated with a reduction in efficiency of conversion of ingested food rather than a reduction in relative consumption rates. In non-mycorrhizal plants, leaf concentrations of the defense compound catalpol showed a linear two-fold increase during the eight days following early herbivory. By contrast, mycorrhizal plants already had elevated levels of leaf catalpol prior to their exposure to early herbivory and did not show any further increase following herbivory. These results indicate that AMF resulted in a systemic induction, rather than priming of these defenses. AMF infection significantly reduced shoot biomass of Plantago lanceolata. We conclude that plant responses to future herbivores are not only influenced by exposure to prior aboveground and belowground organisms, but also by when these prior organisms arrive and interact.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Minggang</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands. m.wang@nioo.knaw.nl.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bezemer</LastName>
<ForeName>T Martijn</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van der Putten</LastName>
<ForeName>Wim H</ForeName>
<Initials>WH</Initials>
<AffiliationInfo>
<Affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratory of Nematology, Wageningen University, P.O. Box 8132, 6700 ES, Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Biere</LastName>
<ForeName>Arjen</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010943" MajorTopicYN="N">Plantago</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018411" MajorTopicYN="N">Spodoptera</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Above-belowground interactions</Keyword>
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">Induced defense</Keyword>
<Keyword MajorTopicYN="N">Iridoid glycosides</Keyword>
<Keyword MajorTopicYN="N">Plantago lanceolata</Keyword>
<Keyword MajorTopicYN="N">Timing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26552915</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-015-0644-0</ArticleId>
<ArticleId IdType="pii">10.1007/s10886-015-0644-0</ArticleId>
<ArticleId IdType="pmc">PMC4670619</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2002 Jun;53(373):1377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12021285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2003;48:521-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2002 Dec;28(12):2429-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12564791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Apr;29(4):823-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12775146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Aug;140(3):430-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15146326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2004 Sep;30(9):1723-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15586671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 Feb;31(2):287-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15856784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2006 Feb;167(2):141-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16670976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Aug;20(8):441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Nov;20(11):617-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Oct;19(10):1062-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17022170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17658291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Oct;10(10):977-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Jul;21(7):919-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18533832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2008 Sep;34(9):1202-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18612691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Jun;160(3):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19271240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Jul;160(4):771-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19408016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 May;90(5):1346-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19537554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2009 Jul;35(7):833-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19568812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Aug;90(8):2088-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19739371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 May 1;12(3):512-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Sep;15(9):507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Sep;191(4):1069-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21592133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Jul;37(7):765-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21691810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Sep;37(9):992-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21858639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Feb;168(2):471-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21913028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Feb;25(2):139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Apr;35(4):819-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22070553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2012 Sep;168:121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2012 Jun;38(6):651-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22623151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2012 Oct;93(10):2208-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23185882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2013 Oct;94:99-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23773298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2013 Jul;39(7):1036-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23797931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 19;8(6):e66053</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Oct;18(10):539-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23871659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Oct 23;4:414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24167508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1992 Jul;18(7):985-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24254142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1988 Jan;14(1):319-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1988 Jan;14(1):335-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2014 May;175(1):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24448700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 May 22;5:3886</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24848943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Oct;94(1):70-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25098820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Soil Biol. 2011 May;47(3):175-181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26109837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1992 Aug;91(2):201-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Apr;131(2):227-235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1998;439:9-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9781292</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001285 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001285 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26552915
   |texte=   Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata L.) Depend on Plant Mycorrhizal Status.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26552915" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020