Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pathway and sink activity for photosynthate translocation in Pisolithus extraradical mycelium of ectomycorrhizal Pinus thunbergii seedlings.

Identifieur interne : 001174 ( Main/Corpus ); précédent : 001173; suivant : 001175

Pathway and sink activity for photosynthate translocation in Pisolithus extraradical mycelium of ectomycorrhizal Pinus thunbergii seedlings.

Auteurs : Munemasa Teramoto ; Bingyun Wu ; Taizo Hogetsu

Source :

RBID : pubmed:26861479

English descriptors

Abstract

The purpose of this study was to identify the pathway and sink activity of photosynthate translocation in the extraradical mycelium (ERM) of a Pisolithus isolate. We labelled ectomycorrhizal (ECM) Pinus thunbergii seedlings with (14)CO2 and followed (14)C distribution within the ERM by autoradiography. (14)C photosynthate translocation in the ERM resulted in (14)C distribution in rhizomorphs throughout the ERM, with (14)C accumulation at the front. When most radial mycelial connections between ECM root tips and the ERM front were cut, the whole allocation of (14)C photosynthates to the ERM was reduced. However, the overall pattern of (14)C distribution in the ERM was maintained even in regions immediately above and below the cut, with no local (14)C depletion or accumulation. We inferred from this result that every portion in the ERM has a significant sink activity and a definite sink capacity for photosynthates and that photosynthates detour the cut and reach throughout the ERM by translocation in every direction. Next, we prepared paired ECM seedlings, ERMs of which had been connected with each other by hyphal fusion, alongside, labelled the left seedling with (14)CO2, and shaded none, one or both of them. (14)C photosynthates were acropetally and basipetally translocated from the left ERM to ECM root tips of the right seedling through rhizomorphs in the left and right ERMs, respectively. With the left seedling illuminated, (14)C translocation from the left to the right ERM increased by shading the right seedling. This result suggests that reduced photosynthate transfer from the host to its ERM increased sink activity of the ERM.

DOI: 10.1007/s00572-016-0684-5
PubMed: 26861479

Links to Exploration step

pubmed:26861479

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pathway and sink activity for photosynthate translocation in Pisolithus extraradical mycelium of ectomycorrhizal Pinus thunbergii seedlings.</title>
<author>
<name sortKey="Teramoto, Munemasa" sort="Teramoto, Munemasa" uniqKey="Teramoto M" first="Munemasa" last="Teramoto">Munemasa Teramoto</name>
<affiliation>
<nlm:affiliation>Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan. mthope007@gmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Present address: Center for Global Environmental Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, 305-8506, Japan. mthope007@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Bingyun" sort="Wu, Bingyun" uniqKey="Wu B" first="Bingyun" last="Wu">Bingyun Wu</name>
<affiliation>
<nlm:affiliation>Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hogetsu, Taizo" sort="Hogetsu, Taizo" uniqKey="Hogetsu T" first="Taizo" last="Hogetsu">Taizo Hogetsu</name>
<affiliation>
<nlm:affiliation>Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26861479</idno>
<idno type="pmid">26861479</idno>
<idno type="doi">10.1007/s00572-016-0684-5</idno>
<idno type="wicri:Area/Main/Corpus">001174</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001174</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pathway and sink activity for photosynthate translocation in Pisolithus extraradical mycelium of ectomycorrhizal Pinus thunbergii seedlings.</title>
<author>
<name sortKey="Teramoto, Munemasa" sort="Teramoto, Munemasa" uniqKey="Teramoto M" first="Munemasa" last="Teramoto">Munemasa Teramoto</name>
<affiliation>
<nlm:affiliation>Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan. mthope007@gmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Present address: Center for Global Environmental Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, 305-8506, Japan. mthope007@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Bingyun" sort="Wu, Bingyun" uniqKey="Wu B" first="Bingyun" last="Wu">Bingyun Wu</name>
<affiliation>
<nlm:affiliation>Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hogetsu, Taizo" sort="Hogetsu, Taizo" uniqKey="Hogetsu T" first="Taizo" last="Hogetsu">Taizo Hogetsu</name>
<affiliation>
<nlm:affiliation>Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autoradiography (MeSH)</term>
<term>Basidiomycota (physiology)</term>
<term>Carbon Radioisotopes (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Photosynthesis (physiology)</term>
<term>Pinus (metabolism)</term>
<term>Seedlings (metabolism)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon Radioisotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Pinus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Photosynthesis</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Autoradiography</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The purpose of this study was to identify the pathway and sink activity of photosynthate translocation in the extraradical mycelium (ERM) of a Pisolithus isolate. We labelled ectomycorrhizal (ECM) Pinus thunbergii seedlings with (14)CO2 and followed (14)C distribution within the ERM by autoradiography. (14)C photosynthate translocation in the ERM resulted in (14)C distribution in rhizomorphs throughout the ERM, with (14)C accumulation at the front. When most radial mycelial connections between ECM root tips and the ERM front were cut, the whole allocation of (14)C photosynthates to the ERM was reduced. However, the overall pattern of (14)C distribution in the ERM was maintained even in regions immediately above and below the cut, with no local (14)C depletion or accumulation. We inferred from this result that every portion in the ERM has a significant sink activity and a definite sink capacity for photosynthates and that photosynthates detour the cut and reach throughout the ERM by translocation in every direction. Next, we prepared paired ECM seedlings, ERMs of which had been connected with each other by hyphal fusion, alongside, labelled the left seedling with (14)CO2, and shaded none, one or both of them. (14)C photosynthates were acropetally and basipetally translocated from the left ERM to ECM root tips of the right seedling through rhizomorphs in the left and right ERMs, respectively. With the left seedling illuminated, (14)C translocation from the left to the right ERM increased by shading the right seedling. This result suggests that reduced photosynthate transfer from the host to its ERM increased sink activity of the ERM. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26861479</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Pathway and sink activity for photosynthate translocation in Pisolithus extraradical mycelium of ectomycorrhizal Pinus thunbergii seedlings.</ArticleTitle>
<Pagination>
<MedlinePgn>453-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-016-0684-5</ELocationID>
<Abstract>
<AbstractText>The purpose of this study was to identify the pathway and sink activity of photosynthate translocation in the extraradical mycelium (ERM) of a Pisolithus isolate. We labelled ectomycorrhizal (ECM) Pinus thunbergii seedlings with (14)CO2 and followed (14)C distribution within the ERM by autoradiography. (14)C photosynthate translocation in the ERM resulted in (14)C distribution in rhizomorphs throughout the ERM, with (14)C accumulation at the front. When most radial mycelial connections between ECM root tips and the ERM front were cut, the whole allocation of (14)C photosynthates to the ERM was reduced. However, the overall pattern of (14)C distribution in the ERM was maintained even in regions immediately above and below the cut, with no local (14)C depletion or accumulation. We inferred from this result that every portion in the ERM has a significant sink activity and a definite sink capacity for photosynthates and that photosynthates detour the cut and reach throughout the ERM by translocation in every direction. Next, we prepared paired ECM seedlings, ERMs of which had been connected with each other by hyphal fusion, alongside, labelled the left seedling with (14)CO2, and shaded none, one or both of them. (14)C photosynthates were acropetally and basipetally translocated from the left ERM to ECM root tips of the right seedling through rhizomorphs in the left and right ERMs, respectively. With the left seedling illuminated, (14)C translocation from the left to the right ERM increased by shading the right seedling. This result suggests that reduced photosynthate transfer from the host to its ERM increased sink activity of the ERM. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Teramoto</LastName>
<ForeName>Munemasa</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan. mthope007@gmail.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Present address: Center for Global Environmental Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, 305-8506, Japan. mthope007@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Bingyun</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hogetsu</LastName>
<ForeName>Taizo</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002250">Carbon Radioisotopes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001345" MajorTopicYN="N">Autoradiography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002250" MajorTopicYN="N">Carbon Radioisotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acropetal and basipetal</Keyword>
<Keyword MajorTopicYN="N">Common mycelial network</Keyword>
<Keyword MajorTopicYN="N">Ectomycorrhizal symbiosis</Keyword>
<Keyword MajorTopicYN="N">Extramatrical mycelium</Keyword>
<Keyword MajorTopicYN="N">Soil nutrients</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26861479</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-016-0684-5</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-016-0684-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecology. 2006 Mar;87(3):563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(4):825-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jan;15(1):25-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14750001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Oct;90(10):2808-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19886489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Apr;22(3):219-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21698547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1097-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18272925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(1):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16390428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Oct;118(2):627-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):789-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1969 Apr;59(4):411-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5811914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2004 Nov-Dec;96(6):1225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Apr;12(2):83-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12035731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):292-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(2):543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19878460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Dec;21(24):6163-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23094975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 Feb;21(2-3):71-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11303651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jun;194(4):1070-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471555</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001174 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001174 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26861479
   |texte=   Pathway and sink activity for photosynthate translocation in Pisolithus extraradical mycelium of ectomycorrhizal Pinus thunbergii seedlings.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26861479" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020