Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Recent advances in actinorhizal symbiosis signaling.

Identifieur interne : 001167 ( Main/Corpus ); précédent : 001166; suivant : 001168

Recent advances in actinorhizal symbiosis signaling.

Auteurs : Emilie Froussart ; Jocelyne Bonneau ; Claudine Franche ; Didier Bogusz

Source :

RBID : pubmed:26873697

English descriptors

Abstract

Nitrogen and phosphorus availability are frequent limiting factors in plant growth and development. Certain bacteria and fungi form root endosymbiotic relationships with plants enabling them to exploit atmospheric nitrogen and soil phosphorus. The relationships between bacteria and plants include nitrogen-fixing Gram-negative proteobacteria called rhizobia that are able to interact with most leguminous plants (Fabaceae) but also with the non-legume Parasponia (Cannabaceae), and actinobacteria Frankia, which are able to interact with about 260 species collectively called actinorhizal plants. Fungi involved in the relationship with plants include Glomeromycota that form an arbuscular mycorrhizal (AM) association intracellularly within the roots of more than 80% of land plants. Increasing numbers of reports suggest that the rhizobial association with legumes has recycled part of the ancestral program used by most plants to interact with AM fungi. This review focuses on the most recent progress made in plant genetic control of root nodulation that occurs in non-legume actinorhizal plant species.

DOI: 10.1007/s11103-016-0450-2
PubMed: 26873697

Links to Exploration step

pubmed:26873697

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recent advances in actinorhizal symbiosis signaling.</title>
<author>
<name sortKey="Froussart, Emilie" sort="Froussart, Emilie" uniqKey="Froussart E" first="Emilie" last="Froussart">Emilie Froussart</name>
<affiliation>
<nlm:affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bonneau, Jocelyne" sort="Bonneau, Jocelyne" uniqKey="Bonneau J" first="Jocelyne" last="Bonneau">Jocelyne Bonneau</name>
<affiliation>
<nlm:affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Franche, Claudine" sort="Franche, Claudine" uniqKey="Franche C" first="Claudine" last="Franche">Claudine Franche</name>
<affiliation>
<nlm:affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France. claudine.franche@ird.fr.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bogusz, Didier" sort="Bogusz, Didier" uniqKey="Bogusz D" first="Didier" last="Bogusz">Didier Bogusz</name>
<affiliation>
<nlm:affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26873697</idno>
<idno type="pmid">26873697</idno>
<idno type="doi">10.1007/s11103-016-0450-2</idno>
<idno type="wicri:Area/Main/Corpus">001167</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001167</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Recent advances in actinorhizal symbiosis signaling.</title>
<author>
<name sortKey="Froussart, Emilie" sort="Froussart, Emilie" uniqKey="Froussart E" first="Emilie" last="Froussart">Emilie Froussart</name>
<affiliation>
<nlm:affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bonneau, Jocelyne" sort="Bonneau, Jocelyne" uniqKey="Bonneau J" first="Jocelyne" last="Bonneau">Jocelyne Bonneau</name>
<affiliation>
<nlm:affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Franche, Claudine" sort="Franche, Claudine" uniqKey="Franche C" first="Claudine" last="Franche">Claudine Franche</name>
<affiliation>
<nlm:affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France. claudine.franche@ird.fr.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bogusz, Didier" sort="Bogusz, Didier" uniqKey="Bogusz D" first="Didier" last="Bogusz">Didier Bogusz</name>
<affiliation>
<nlm:affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fabaceae (microbiology)</term>
<term>Fabaceae (physiology)</term>
<term>Frankia (physiology)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen Fixation (MeSH)</term>
<term>Plant Root Nodulation (MeSH)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Rhizobium (MeSH)</term>
<term>Rhizosphere (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Indoleacetic Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fabaceae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fabaceae</term>
<term>Frankia</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Nitrogen Fixation</term>
<term>Plant Root Nodulation</term>
<term>Rhizobium</term>
<term>Rhizosphere</term>
<term>Signal Transduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nitrogen and phosphorus availability are frequent limiting factors in plant growth and development. Certain bacteria and fungi form root endosymbiotic relationships with plants enabling them to exploit atmospheric nitrogen and soil phosphorus. The relationships between bacteria and plants include nitrogen-fixing Gram-negative proteobacteria called rhizobia that are able to interact with most leguminous plants (Fabaceae) but also with the non-legume Parasponia (Cannabaceae), and actinobacteria Frankia, which are able to interact with about 260 species collectively called actinorhizal plants. Fungi involved in the relationship with plants include Glomeromycota that form an arbuscular mycorrhizal (AM) association intracellularly within the roots of more than 80% of land plants. Increasing numbers of reports suggest that the rhizobial association with legumes has recycled part of the ancestral program used by most plants to interact with AM fungi. This review focuses on the most recent progress made in plant genetic control of root nodulation that occurs in non-legume actinorhizal plant species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26873697</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>90</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Recent advances in actinorhizal symbiosis signaling.</ArticleTitle>
<Pagination>
<MedlinePgn>613-22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-016-0450-2</ELocationID>
<Abstract>
<AbstractText>Nitrogen and phosphorus availability are frequent limiting factors in plant growth and development. Certain bacteria and fungi form root endosymbiotic relationships with plants enabling them to exploit atmospheric nitrogen and soil phosphorus. The relationships between bacteria and plants include nitrogen-fixing Gram-negative proteobacteria called rhizobia that are able to interact with most leguminous plants (Fabaceae) but also with the non-legume Parasponia (Cannabaceae), and actinobacteria Frankia, which are able to interact with about 260 species collectively called actinorhizal plants. Fungi involved in the relationship with plants include Glomeromycota that form an arbuscular mycorrhizal (AM) association intracellularly within the roots of more than 80% of land plants. Increasing numbers of reports suggest that the rhizobial association with legumes has recycled part of the ancestral program used by most plants to interact with AM fungi. This review focuses on the most recent progress made in plant genetic control of root nodulation that occurs in non-legume actinorhizal plant species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Froussart</LastName>
<ForeName>Emilie</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bonneau</LastName>
<ForeName>Jocelyne</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Franche</LastName>
<ForeName>Claudine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France. claudine.franche@ird.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bogusz</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="N">Fabaceae</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040161" MajorTopicYN="N">Frankia</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009586" MajorTopicYN="N">Nitrogen Fixation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055170" MajorTopicYN="N">Plant Root Nodulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="N">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Actinorhizal plants</Keyword>
<Keyword MajorTopicYN="N">Frankia</Keyword>
<Keyword MajorTopicYN="N">Nitrogen-fixing root nodule symbiosis</Keyword>
<Keyword MajorTopicYN="N">Nodulation</Keyword>
<Keyword MajorTopicYN="N">Rhizobia</Keyword>
<Keyword MajorTopicYN="N">Signaling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>11</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26873697</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-016-0450-2</ArticleId>
<ArticleId IdType="pii">10.1007/s11103-016-0450-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jun;13(6):693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10830269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Dec;26(12):4680-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25527707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jul;18(7):1617-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2866-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17827349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Jan;12(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19624707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Aug;144(4):1852-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Aug 19;5:13112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26287281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1786-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):700-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21464474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Oct;16(5):561-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24004572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Nov;208(3):887-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26096779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 May;23(5):593-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20367468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(1):86-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26484850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1980 Aug;26(8):971-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7459718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):113-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Apr;76(8):2451-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20190089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1998 Oct;260(1):115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9829835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Jan;78(2):575-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Nov;24(11):1289-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jan;13(1):107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Jun 10;5:4087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24912610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 May;36(5):909-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23145472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(5):e28847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24736593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(1):171-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(4):709-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16025340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1789-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Dec 10;14:342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25492470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Oct;20(10):1231-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17918625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Nov;7(11):511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Dec;193(24):7017-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22123767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Sep;199(4):1012-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23692063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jan;65(2):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 29;441(7097):1149-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16810256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Aug;19(8):914-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16903357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 31;8(5):e64515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23741336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 1;316(5829):1307-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jan;17(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2011;45:119-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21838550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1996 Jan;46(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8573482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):190-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12 ):4928-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4701-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Mar;9(3):e1003352</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Feb 12;15(2):139-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24528861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr 10;165(2):747-758</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24722550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 29;8(8):e72442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24009681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Aug;207(3):551-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26010117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1372-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Mar;164(3):1430-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24424321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Mar;62(6):1757-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21307383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jun;77(11):3617-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21498757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 27;303(5662):1361-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):324-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 29;441(7097):1153-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16810257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Jul;16(7):600-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12848425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1979 May;25(5):565-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">476539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):281-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25096975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Nov 11;402(6758):191-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10647012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 28;10(5):e0127630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26020781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 21;5:399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25191330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Mar 4;6(3):e68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18318603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2011 Aug 25;11:192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21867524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21825141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Mar;167(3):1149-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25627215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2647-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7708699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001167 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001167 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26873697
   |texte=   Recent advances in actinorhizal symbiosis signaling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26873697" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020