Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland.

Identifieur interne : 001163 ( Main/Corpus ); précédent : 001162; suivant : 001164

Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland.

Auteurs : Sara Varela-Cervero ; Álvaro L Pez-García ; José Miguel Barea ; Concepci N Azc N-Aguilar

Source :

RBID : pubmed:26883142

English descriptors

Abstract

As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs.

DOI: 10.1007/s00572-016-0687-2
PubMed: 26883142

Links to Exploration step

pubmed:26883142

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland.</title>
<author>
<name sortKey="Varela Cervero, Sara" sort="Varela Cervero, Sara" uniqKey="Varela Cervero S" first="Sara" last="Varela-Cervero">Sara Varela-Cervero</name>
<affiliation>
<nlm:affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain. sara.varela@eez.csic.es.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="L Pez Garcia, Alvaro" sort="L Pez Garcia, Alvaro" uniqKey="L Pez Garcia A" first="Álvaro" last="L Pez-García">Álvaro L Pez-García</name>
<affiliation>
<nlm:affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barea, Jose Miguel" sort="Barea, Jose Miguel" uniqKey="Barea J" first="José Miguel" last="Barea">José Miguel Barea</name>
<affiliation>
<nlm:affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Azc N Aguilar, Concepci N" sort="Azc N Aguilar, Concepci N" uniqKey="Azc N Aguilar C" first="Concepci N" last="Azc N-Aguilar">Concepci N Azc N-Aguilar</name>
<affiliation>
<nlm:affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26883142</idno>
<idno type="pmid">26883142</idno>
<idno type="doi">10.1007/s00572-016-0687-2</idno>
<idno type="wicri:Area/Main/Corpus">001163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001163</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland.</title>
<author>
<name sortKey="Varela Cervero, Sara" sort="Varela Cervero, Sara" uniqKey="Varela Cervero S" first="Sara" last="Varela-Cervero">Sara Varela-Cervero</name>
<affiliation>
<nlm:affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain. sara.varela@eez.csic.es.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="L Pez Garcia, Alvaro" sort="L Pez Garcia, Alvaro" uniqKey="L Pez Garcia A" first="Álvaro" last="L Pez-García">Álvaro L Pez-García</name>
<affiliation>
<nlm:affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barea, Jose Miguel" sort="Barea, Jose Miguel" uniqKey="Barea J" first="José Miguel" last="Barea">José Miguel Barea</name>
<affiliation>
<nlm:affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Azc N Aguilar, Concepci N" sort="Azc N Aguilar, Concepci N" uniqKey="Azc N Aguilar C" first="Concepci N" last="Azc N-Aguilar">Concepci N Azc N-Aguilar</name>
<affiliation>
<nlm:affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Mediterranean Region (MeSH)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Shoots (growth & development)</term>
<term>Rosmarinus (growth & development)</term>
<term>Rosmarinus (microbiology)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Spores, Fungal (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Rosmarinus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Rosmarinus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mediterranean Region</term>
<term>Soil Microbiology</term>
<term>Spores, Fungal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26883142</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland.</ArticleTitle>
<Pagination>
<MedlinePgn>489-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-016-0687-2</ELocationID>
<Abstract>
<AbstractText>As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Varela-Cervero</LastName>
<ForeName>Sara</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9513-0224</Identifier>
<AffiliationInfo>
<Affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain. sara.varela@eez.csic.es.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>López-García</LastName>
<ForeName>Álvaro</ForeName>
<Initials>Á</Initials>
<AffiliationInfo>
<Affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barea</LastName>
<ForeName>José Miguel</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Azcón-Aguilar</LastName>
<ForeName>Concepción</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019083" MajorTopicYN="N">Mediterranean Region</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027542" MajorTopicYN="N">Rosmarinus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">Colonization strategies</Keyword>
<Keyword MajorTopicYN="N">Life-history traits</Keyword>
<Keyword MajorTopicYN="N">Mediterranean environments</Keyword>
<Keyword MajorTopicYN="N">Propagule types</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>11</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26883142</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-016-0687-2</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-016-0687-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycologia. 2010 Mar-Apr;102(2):261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20361494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Aug;12(4):181-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Oct;23(7):515-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2014 Jun;88(3):437-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24646134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2007 Aug;9(8):1930-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:227-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21391813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Jun;17(4):259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17429700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1515-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25298030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Aug;65(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2009 Dec 7;276(1676):4237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19740877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1995 Oct;10(10):407-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Dec;90(12):3566-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20120823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2006 Feb;4(2):102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Sep;18(9):484-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23756036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22606282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2465-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2014 Dec;176(4):1075-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25255855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(1):222-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23772913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 22;316(5832):1746-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17588930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(2):185-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16995906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Apr;72(1):114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20459515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2015 Aug;17(8):2882-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25677957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1406-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25639293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(1):223-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561207</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001163 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001163 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26883142
   |texte=   Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26883142" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020