Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization.

Identifieur interne : 001115 ( Main/Corpus ); précédent : 001114; suivant : 001116

RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization.

Auteurs : Valentina Fiorilli ; Simone Belmondo ; Hassine Radhouane Khouja ; Simona Abbà ; Antonella Faccio ; Stefania Daghino ; Luisa Lanfranco

Source :

RBID : pubmed:27075897

English descriptors

Abstract

Transcriptomics and genomics data recently obtained from the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis have offered new opportunities to decipher the contribution of the fungal partner to the establishment of the symbiotic association. The large number of genes which do not show similarity to known proteins witnesses the uniqueness of this group of plant-associated fungi. In this work, we characterize a gene that was called RiPEIP1 (Preferentially Expressed In Planta). Its expression is strongly induced in the intraradical phase, including arbuscules, and follows the expression profile of the Medicago truncatula phosphate transporter MtPT4, a molecular marker of a functional symbiosis. Indeed, mtpt4 mutant plants, which exhibit low mycorrhizal colonization and an accelerated arbuscule turnover, also show a reduced RiPEIP1 mRNA abundance. To further characterize RiPEIP1, in the absence of genetic transformation protocols for AM fungi, we took advantage of two different fungal heterologous systems. When expressed as a GFP fusion in yeast cells, RiPEIP1 localizes in the endomembrane system, in particular to the endoplasmic reticulum, which is consistent with the in silico prediction of four transmembrane domains. We then generated RiPEIP1-expressing strains of the fungus Oidiodendron maius, ericoid endomycorrhizal fungus for which transformation protocols are available. Roots of Vaccinium myrtillus colonized by RiPEIP1-expressing transgenic strains showed a higher mycorrhization level compared to roots colonized by the O. maius wild-type strain, suggesting that RiPEIP1 may regulate the root colonization process.

DOI: 10.1007/s00572-016-0697-0
PubMed: 27075897

Links to Exploration step

pubmed:27075897

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization.</title>
<author>
<name sortKey="Fiorilli, Valentina" sort="Fiorilli, Valentina" uniqKey="Fiorilli V" first="Valentina" last="Fiorilli">Valentina Fiorilli</name>
<affiliation>
<nlm:affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy. valentina.fiorilli@unito.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Belmondo, Simone" sort="Belmondo, Simone" uniqKey="Belmondo S" first="Simone" last="Belmondo">Simone Belmondo</name>
<affiliation>
<nlm:affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khouja, Hassine Radhouane" sort="Khouja, Hassine Radhouane" uniqKey="Khouja H" first="Hassine Radhouane" last="Khouja">Hassine Radhouane Khouja</name>
<affiliation>
<nlm:affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abba, Simona" sort="Abba, Simona" uniqKey="Abba S" first="Simona" last="Abbà">Simona Abbà</name>
<affiliation>
<nlm:affiliation>Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Faccio, Antonella" sort="Faccio, Antonella" uniqKey="Faccio A" first="Antonella" last="Faccio">Antonella Faccio</name>
<affiliation>
<nlm:affiliation>Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Daghino, Stefania" sort="Daghino, Stefania" uniqKey="Daghino S" first="Stefania" last="Daghino">Stefania Daghino</name>
<affiliation>
<nlm:affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lanfranco, Luisa" sort="Lanfranco, Luisa" uniqKey="Lanfranco L" first="Luisa" last="Lanfranco">Luisa Lanfranco</name>
<affiliation>
<nlm:affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27075897</idno>
<idno type="pmid">27075897</idno>
<idno type="doi">10.1007/s00572-016-0697-0</idno>
<idno type="wicri:Area/Main/Corpus">001115</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001115</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization.</title>
<author>
<name sortKey="Fiorilli, Valentina" sort="Fiorilli, Valentina" uniqKey="Fiorilli V" first="Valentina" last="Fiorilli">Valentina Fiorilli</name>
<affiliation>
<nlm:affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy. valentina.fiorilli@unito.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Belmondo, Simone" sort="Belmondo, Simone" uniqKey="Belmondo S" first="Simone" last="Belmondo">Simone Belmondo</name>
<affiliation>
<nlm:affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khouja, Hassine Radhouane" sort="Khouja, Hassine Radhouane" uniqKey="Khouja H" first="Hassine Radhouane" last="Khouja">Hassine Radhouane Khouja</name>
<affiliation>
<nlm:affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abba, Simona" sort="Abba, Simona" uniqKey="Abba S" first="Simona" last="Abbà">Simona Abbà</name>
<affiliation>
<nlm:affiliation>Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Faccio, Antonella" sort="Faccio, Antonella" uniqKey="Faccio A" first="Antonella" last="Faccio">Antonella Faccio</name>
<affiliation>
<nlm:affiliation>Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Daghino, Stefania" sort="Daghino, Stefania" uniqKey="Daghino S" first="Stefania" last="Daghino">Stefania Daghino</name>
<affiliation>
<nlm:affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lanfranco, Luisa" sort="Lanfranco, Luisa" uniqKey="Lanfranco L" first="Luisa" last="Lanfranco">Luisa Lanfranco</name>
<affiliation>
<nlm:affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation, Fungal (physiology)</term>
<term>Glomeromycota (genetics)</term>
<term>Glomeromycota (metabolism)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Yeasts (genetics)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Green Fluorescent Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transcriptomics and genomics data recently obtained from the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis have offered new opportunities to decipher the contribution of the fungal partner to the establishment of the symbiotic association. The large number of genes which do not show similarity to known proteins witnesses the uniqueness of this group of plant-associated fungi. In this work, we characterize a gene that was called RiPEIP1 (Preferentially Expressed In Planta). Its expression is strongly induced in the intraradical phase, including arbuscules, and follows the expression profile of the Medicago truncatula phosphate transporter MtPT4, a molecular marker of a functional symbiosis. Indeed, mtpt4 mutant plants, which exhibit low mycorrhizal colonization and an accelerated arbuscule turnover, also show a reduced RiPEIP1 mRNA abundance. To further characterize RiPEIP1, in the absence of genetic transformation protocols for AM fungi, we took advantage of two different fungal heterologous systems. When expressed as a GFP fusion in yeast cells, RiPEIP1 localizes in the endomembrane system, in particular to the endoplasmic reticulum, which is consistent with the in silico prediction of four transmembrane domains. We then generated RiPEIP1-expressing strains of the fungus Oidiodendron maius, ericoid endomycorrhizal fungus for which transformation protocols are available. Roots of Vaccinium myrtillus colonized by RiPEIP1-expressing transgenic strains showed a higher mycorrhization level compared to roots colonized by the O. maius wild-type strain, suggesting that RiPEIP1 may regulate the root colonization process. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27075897</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>02</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization.</ArticleTitle>
<Pagination>
<MedlinePgn>609-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-016-0697-0</ELocationID>
<Abstract>
<AbstractText>Transcriptomics and genomics data recently obtained from the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis have offered new opportunities to decipher the contribution of the fungal partner to the establishment of the symbiotic association. The large number of genes which do not show similarity to known proteins witnesses the uniqueness of this group of plant-associated fungi. In this work, we characterize a gene that was called RiPEIP1 (Preferentially Expressed In Planta). Its expression is strongly induced in the intraradical phase, including arbuscules, and follows the expression profile of the Medicago truncatula phosphate transporter MtPT4, a molecular marker of a functional symbiosis. Indeed, mtpt4 mutant plants, which exhibit low mycorrhizal colonization and an accelerated arbuscule turnover, also show a reduced RiPEIP1 mRNA abundance. To further characterize RiPEIP1, in the absence of genetic transformation protocols for AM fungi, we took advantage of two different fungal heterologous systems. When expressed as a GFP fusion in yeast cells, RiPEIP1 localizes in the endomembrane system, in particular to the endoplasmic reticulum, which is consistent with the in silico prediction of four transmembrane domains. We then generated RiPEIP1-expressing strains of the fungus Oidiodendron maius, ericoid endomycorrhizal fungus for which transformation protocols are available. Roots of Vaccinium myrtillus colonized by RiPEIP1-expressing transgenic strains showed a higher mycorrhization level compared to roots colonized by the O. maius wild-type strain, suggesting that RiPEIP1 may regulate the root colonization process. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fiorilli</LastName>
<ForeName>Valentina</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy. valentina.fiorilli@unito.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Belmondo</LastName>
<ForeName>Simone</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khouja</LastName>
<ForeName>Hassine Radhouane</ForeName>
<Initials>HR</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abbà</LastName>
<ForeName>Simona</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Faccio</LastName>
<ForeName>Antonella</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Daghino</LastName>
<ForeName>Stefania</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lanfranco</LastName>
<ForeName>Luisa</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal symbiosis</Keyword>
<Keyword MajorTopicYN="N">Heterologous expression system</Keyword>
<Keyword MajorTopicYN="N">Oidiodendron maius</Keyword>
<Keyword MajorTopicYN="N">Rhizophagus irregularis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27075897</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-016-0697-0</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-016-0697-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):454-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22673109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):549-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2007 Jan;51(1):59-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17061094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1283-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Oct;23(7):515-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Sep 03;5:436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25232358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Mar 25;20(6):1425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1561104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2016 Jan;10 (1):130-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26046255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Feb 19;427(6976):733-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Nov;22(11):1412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19810810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(2):537-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17995919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2011;3:950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Dec;68(6):954-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Mar;51(3):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2007 Aug;52(2):65-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17589849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):451-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21489861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 14;5:547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25352857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):755-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Nov;20(8):519-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20697748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2015 Apr;47(4):410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25706625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Apr;203-204:107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23415334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jan;10(1):e1004078</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24415955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;56(1):117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2824287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(2):617-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23157494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Dec;15(12):2911-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14630973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1055-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Aug;26:113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26190590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 May;237(5):1267-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23361889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(3):693-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Nov;204(3):638-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25039900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2010 Jun;56(3):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20379721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Oct;23(10):3812-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21972259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 19;8(11):e80729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24260466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 15;464(7291):1033-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Oct;9(10):3153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2120038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jun;120(2):587-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Mar;20(3):150-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):809-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2004 Aug;41(8):794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15219563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Nov;48(11):1044-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21907817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):853-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22931497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9923-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24958869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 13;433(7022):160-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001115 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001115 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27075897
   |texte=   RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27075897" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020