Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

L-System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots.

Identifieur interne : 001103 ( Main/Corpus ); précédent : 001102; suivant : 001104

L-System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots.

Auteurs : A. Schnepf ; D. Leitner ; P F Schweiger ; P. Scholl ; J. Jansa

Source :

RBID : pubmed:27097653

English descriptors

Abstract

Development of arbuscular mycorrhizal fungal colonization of roots and the surrounding soil is the central process of mycorrhizal symbiosis, important for ecosystem functioning and commercial inoculum applications. To improve mechanistic understanding of this highly spatially and temporarily dynamic process, we developed a three-dimensional model taking into account growth of the roots and hyphae. It is for the first time that infection within the root system is simulated dynamically and in a spatially resolved way. Comparison between data measured in a calibration experiment and simulated results showed a good fit. Our simulations showed that the position of the fungal inoculum affects the sensitivity of hyphal growth parameters. Variation in speed of secondary infection and hyphal lifetime had a different effect on root infection and hyphal length, respectively, depending on whether the inoculum was concentrated or dispersed. For other parameters (branching rate, distance between entry points), the relative effect was the same independent of inoculum placement. The model also indicated that maximum root colonization levels well below 100%, often observed experimentally, may be a result of differential spread of roots and hyphae, besides intrinsic plant control, particularly upon localized placement of inoculum and slow secondary infection.

DOI: 10.1098/rsif.2016.0129
PubMed: 27097653
PubMed Central: PMC4874435

Links to Exploration step

pubmed:27097653

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">L-System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots.</title>
<author>
<name sortKey="Schnepf, A" sort="Schnepf, A" uniqKey="Schnepf A" first="A" last="Schnepf">A. Schnepf</name>
<affiliation>
<nlm:affiliation>Forschungszentrum Juelich GmbH, Institute of Bio- and Geosciences, IBG-3: Agrosphere, 52425 Juelich, Germany a.schnepf@fz-juelich.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leitner, D" sort="Leitner, D" uniqKey="Leitner D" first="D" last="Leitner">D. Leitner</name>
<affiliation>
<nlm:affiliation>Computational Science Center, University of Vienna, Oskar Morgenstern-Platz 1, 1090 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schweiger, P F" sort="Schweiger, P F" uniqKey="Schweiger P" first="P F" last="Schweiger">P F Schweiger</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scholl, P" sort="Scholl, P" uniqKey="Scholl P" first="P" last="Scholl">P. Scholl</name>
<affiliation>
<nlm:affiliation>Institute of Hydraulics and Rural Water Management, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jansa, J" sort="Jansa, J" uniqKey="Jansa J" first="J" last="Jansa">J. Jansa</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Praha 4 - Krč, 142 20, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27097653</idno>
<idno type="pmid">27097653</idno>
<idno type="doi">10.1098/rsif.2016.0129</idno>
<idno type="pmc">PMC4874435</idno>
<idno type="wicri:Area/Main/Corpus">001103</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001103</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">L-System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots.</title>
<author>
<name sortKey="Schnepf, A" sort="Schnepf, A" uniqKey="Schnepf A" first="A" last="Schnepf">A. Schnepf</name>
<affiliation>
<nlm:affiliation>Forschungszentrum Juelich GmbH, Institute of Bio- and Geosciences, IBG-3: Agrosphere, 52425 Juelich, Germany a.schnepf@fz-juelich.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leitner, D" sort="Leitner, D" uniqKey="Leitner D" first="D" last="Leitner">D. Leitner</name>
<affiliation>
<nlm:affiliation>Computational Science Center, University of Vienna, Oskar Morgenstern-Platz 1, 1090 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schweiger, P F" sort="Schweiger, P F" uniqKey="Schweiger P" first="P F" last="Schweiger">P F Schweiger</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scholl, P" sort="Scholl, P" uniqKey="Scholl P" first="P" last="Scholl">P. Scholl</name>
<affiliation>
<nlm:affiliation>Institute of Hydraulics and Rural Water Management, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jansa, J" sort="Jansa, J" uniqKey="Jansa J" first="J" last="Jansa">J. Jansa</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Praha 4 - Krč, 142 20, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of the Royal Society, Interface</title>
<idno type="eISSN">1742-5662</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Hyphae (growth & development)</term>
<term>Models, Biological (MeSH)</term>
<term>Mycorrhizae (growth & development)</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Hyphae</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Biological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Development of arbuscular mycorrhizal fungal colonization of roots and the surrounding soil is the central process of mycorrhizal symbiosis, important for ecosystem functioning and commercial inoculum applications. To improve mechanistic understanding of this highly spatially and temporarily dynamic process, we developed a three-dimensional model taking into account growth of the roots and hyphae. It is for the first time that infection within the root system is simulated dynamically and in a spatially resolved way. Comparison between data measured in a calibration experiment and simulated results showed a good fit. Our simulations showed that the position of the fungal inoculum affects the sensitivity of hyphal growth parameters. Variation in speed of secondary infection and hyphal lifetime had a different effect on root infection and hyphal length, respectively, depending on whether the inoculum was concentrated or dispersed. For other parameters (branching rate, distance between entry points), the relative effect was the same independent of inoculum placement. The model also indicated that maximum root colonization levels well below 100%, often observed experimentally, may be a result of differential spread of roots and hyphae, besides intrinsic plant control, particularly upon localized placement of inoculum and slow secondary infection. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27097653</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1742-5662</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>117</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of the Royal Society, Interface</Title>
<ISOAbbreviation>J R Soc Interface</ISOAbbreviation>
</Journal>
<ArticleTitle>L-System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rsif.2016.0129</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">20160129</ELocationID>
<Abstract>
<AbstractText>Development of arbuscular mycorrhizal fungal colonization of roots and the surrounding soil is the central process of mycorrhizal symbiosis, important for ecosystem functioning and commercial inoculum applications. To improve mechanistic understanding of this highly spatially and temporarily dynamic process, we developed a three-dimensional model taking into account growth of the roots and hyphae. It is for the first time that infection within the root system is simulated dynamically and in a spatially resolved way. Comparison between data measured in a calibration experiment and simulated results showed a good fit. Our simulations showed that the position of the fungal inoculum affects the sensitivity of hyphal growth parameters. Variation in speed of secondary infection and hyphal lifetime had a different effect on root infection and hyphal length, respectively, depending on whether the inoculum was concentrated or dispersed. For other parameters (branching rate, distance between entry points), the relative effect was the same independent of inoculum placement. The model also indicated that maximum root colonization levels well below 100%, often observed experimentally, may be a result of differential spread of roots and hyphae, besides intrinsic plant control, particularly upon localized placement of inoculum and slow secondary infection. </AbstractText>
<CopyrightInformation>© 2016 The Author(s).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schnepf</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2203-4466</Identifier>
<AffiliationInfo>
<Affiliation>Forschungszentrum Juelich GmbH, Institute of Bio- and Geosciences, IBG-3: Agrosphere, 52425 Juelich, Germany a.schnepf@fz-juelich.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leitner</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Computational Science Center, University of Vienna, Oskar Morgenstern-Platz 1, 1090 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schweiger</LastName>
<ForeName>P F</ForeName>
<Initials>PF</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scholl</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Institute of Hydraulics and Rural Water Management, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jansa</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Praha 4 - Krč, 142 20, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J R Soc Interface</MedlineTA>
<NlmUniqueID>101217269</NlmUniqueID>
<ISSNLinking>1742-5662</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">L-system</Keyword>
<Keyword MajorTopicYN="N">arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">external hyphae</Keyword>
<Keyword MajorTopicYN="N">mathematical model</Keyword>
<Keyword MajorTopicYN="N">root architecture</Keyword>
<Keyword MajorTopicYN="N">root system infection</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>03</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27097653</ArticleId>
<ArticleId IdType="pii">rsif.2016.0129</ArticleId>
<ArticleId IdType="doi">10.1098/rsif.2016.0129</ArticleId>
<ArticleId IdType="pmc">PMC4874435</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2014 Jun;65(9):2365-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24706718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2004 Apr;108(Pt 4):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15209276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Mar;161(3):339-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Nov;21(8):689-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21472448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jan;164(1):24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24218493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Apr;23(8):2118-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24611988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1537-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25382456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 May;15(3):203-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2008 Jul 6;5(24):773-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1503-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25561086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(2):244-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(2):466-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18028302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2012 Mar;12(2):219-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22059700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2014 Sep;68(9):2603-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24909843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(3):779-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2004 May-Jun;96(3):452-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148868</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001103 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001103 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27097653
   |texte=   L-System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27097653" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020